Skip to main content
Log in

Extended Possibilities of Analysis for Supported Metal Catalysts and Nanocomposites by Dynamic Light Scattering

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

This study is a continuation of the work on the use of dynamic light scattering (DLS) for the analysis of active component particle sizes in supported catalysts. It was shown that the proposed STS (from solid to sol) approach is also applicable to supported catalysts based on sparingly soluble supports and nanocomposites. It was found that partial dissolution or destruction of a support with the formation of solution containing the desired nanoparticles is sufficient for effective DLS analysis. It was found that, under certain conditions, the effect of secondary aggregation of nanoparticles in solution can be observed in the course of catalyst dissolution, and this effect can prevent correct measurements. A method was proposed to avoid the secondary aggregation of particles in the course of the selective dissolution of a support. A good agreement between the results obtained by the new (DLS) method and traditional (TEM and XRD) methods was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. The selective dissolution of carbon supports can also be performed by heating them at T > 350°C in organic solvents (quinoline, tetralin, etc.) with hydrogen donors by analogy with processes of the thermal dissolution of coals [20]. However, this procedure is much more cumbersome to implement and much less versatile in terms of dissolving other types of supports; therefore, the decomposition in sulfuric acid upon heating was used.

REFERENCES

  1. Sun, B., Wu, F., Zhang, Q., Chu, X., Wang, Z., Huang, X., Li, J., Yao, C., Zhou, N., and Shen, J., J. Colloid Interface Sci., 2021, vol. 584, p. 505.

    Article  CAS  Google Scholar 

  2. Haruta, M., Catal. Today, 1997, vol. 36, p. 153.

    Article  CAS  Google Scholar 

  3. Shimura, K. and Fujitani, T., Mol. Catal., 2021, vol. 509, p. 111623.

    Article  CAS  Google Scholar 

  4. Antolini, E., Appl. Catal., B, 2016, vol. 181, p. 298.

    Article  CAS  Google Scholar 

  5. Bergeret, G. and Gallezot, P., Handbook of Heterogeneous Catalysis, Chichester: Wiley, 2008, p. 738.

    Google Scholar 

  6. Matyi, R.J., Schwartz, L.H., and Butt, J.B., Catal. Rev., 1987, vol. 29, p. 41.

    Article  Google Scholar 

  7. Gogate, M.R., Appl. Catal., A, 2016, vol. 514, p. 203.

  8. Hughes, R., Deactivation of Catalyst, New York: Academic, 1984.

    Google Scholar 

  9. Hansen, T.W., Delariva, A.T., Challa, S.R., and Datye, A.K., Acc. Chem. Res., 2013, vol. 46(8), p. 1720.

    Article  CAS  Google Scholar 

  10. Wimmer, A., Urstoeger, A., Hinke, T., Aust, M., Altmann, P.J., and Schuster, M., Anal. Chim. Acta, 2021, vol. 1150, p. 238198.

    Article  CAS  Google Scholar 

  11. Yakovlev, I.V., Yakushkin, S.S., Kazakova, M.A., Trukhan, S.N., Volkova, Z.N., Gerashchenko, A.P., Andreev, A.S., Ishchenko, A.V., Martyanov, O.N., Lapina, O.B., and D’Espinose de Lacaillerie, J-B., Phys. Chem. Chem. Phys. 2021, vol. 23, p. 2723.

    Article  CAS  Google Scholar 

  12. Geiss, O., Cascio, C., Gilliland, D., Franchini, F., and Barrero-Moreno, J., J. Chromatogr. A, 2013, vol. 1321 P. 100.

    Article  CAS  Google Scholar 

  13. Bhattacharjee, S., J. Controlled Release, 2016, vol. 235, p. 337.

    Article  CAS  Google Scholar 

  14. Souza, T.G.F., Ciminelli, V.S.T., and Mohallem, N.D.S., J. Phys. Conf. Ser., 2016, vol. 733. 012039.

    Article  Google Scholar 

  15. Larichev, Yu.V., Chem. Pap., 2021, vol. 75, p. 2059.

    Article  CAS  Google Scholar 

  16. Larichev, Yu.V., Kinet. Catal., 2021, vol. 62, no. 4, p. 483.

    Google Scholar 

  17. Larichev, Yu.V., Nano-Struct. Nano-Objects, 2021, vol. 25, p. 100647.

    Article  CAS  Google Scholar 

  18. Yeletsky, P.M., Yakovlev, V.A., Mel’gunov, M.S., and Parmon, V.N., Microporous Mesoporous Mater., 2009, vol. 121, p. 34.

    Article  CAS  Google Scholar 

  19. Larichev, Yu.V., Yeletsky P.M., Yakovlev V.A., J. Phys. Chem. Solids, 2015, vol. 87, p. 58.

    Article  CAS  Google Scholar 

  20. Kuznetsov, P.N., Perminov, N.V., Kuznetsova, L.I., Buryukin, F.A., Kolesnikova, S.M., Kamenskii, E.S., and Pavlenko, N.I., Solid Fuel Chem., 2020, no. 2, p. 61.

  21. Soft Scientific, DynaLS–Software for data analysis in Photon Correlation Spectroscopy, http://www.softscientific.com/science/WhitePapers/dynals1/dynals100.htm.

  22. Hassan, P.A., Rana, S., and Verma, G., Langmuir, 2015, vol. 31, p. 3.

    Article  CAS  Google Scholar 

  23. Thomas, J.C., J. Colloid Interface Sci., 1987, vol. 117, p. 187.

    Article  CAS  Google Scholar 

  24. Pradhan, S., Hedberg, J., Blomberg, E., Wold, S., and Wallinder, I.O., J. Nanopart. Res., 2016, vol. 18, p. 285.

    Article  Google Scholar 

  25. Tseng, K.H., Lin, Y.H., Tien, D.C., Ku, H.C., and Stobinski, L., Micro Nano Lett., 2018, vol. 13, no. 11, p. 1545.

    Article  CAS  Google Scholar 

  26. Pradhan, S., Hedberg, J., Rosenqvist, J., Jonsson, C.M., Wold, S., Blomberg, E., and Wallinder, I.O., PLOS ONE, 2018, vol. 13, no. 2, p. e0192553.

    Article  Google Scholar 

  27. Mateos, H., Picca, R.A., Mallardi, A., Dell’Aglio, M., De Giacomo, A., Cioffi, N., and Palazzo, G., Appl. Sci., 2020, vol. 10. P. 4169.

    Article  CAS  Google Scholar 

  28. Larichev, Yu.V., Kinet. Catal., 2021, vol. 62, no. 6, p. 820.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.V. Ishchenko, N.A. Alekseeva, N.N. San’kova, and E.V. Parkhomchuk for their assistance in conducting the experiments and to the Center for Collective Use High Technologies and Analytics of Nanosystems, Novosibirsk State University for the provision of measuring equipment.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation and carried out within the framework of a state contract of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A21-121011390053-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Larichev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: DLS, dynamic light scattering; TEM, transmission electron microscopy; XRD, X-ray diffraction; STS, from solid to sol; CSR, coherent scattering region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larichev, Y.V. Extended Possibilities of Analysis for Supported Metal Catalysts and Nanocomposites by Dynamic Light Scattering. Kinet Catal 63, 599–605 (2022). https://doi.org/10.1134/S002315842205007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315842205007X

Keywords:

Navigation