Skip to main content
Log in

Development of Small-Angle X-Ray Scattering Methods for Analysis of Supported Catalysts and Nanocomposites

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A method of selective dissolution of support or matrix (STS) for studying supported metal catalysts and nanocomposites by small angle X-ray scattering has been proposed. Due to this technique, the strong parasitic scattering from the porous structure of support/matrix or their particles disappears. The efficiency of the STS technique was demonstrated on different samples. The transmission electron microscopy data of the initial supported catalysts were found to be in good agreement with the small angle X-ray scattering data of sols prepared from them. The main limitations of this technique are selective dissolution of different phases in complex materials and possible particle aggregation in the prepared sols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Beerthuis, R., Willem de Rijk, J., Deeley, J.M.S., Sunley, G.J., de Jong, K.P., and de Jongh, P.E., J. Catal., 2020, vol. 388, p. 30.

    Article  CAS  Google Scholar 

  2. Haruta, M., Catal. Today, 1997, vol. 36, p. 153.

    Article  CAS  Google Scholar 

  3. Hughes, R., Deactivation of Catalyst, New York: Academic, 1984.

    Google Scholar 

  4. Bergeret, G. and Gallezot, P., Handbook of Heterogeneous Catalysis, Weinheim: Wiley, 2008.

    Google Scholar 

  5. Liu, J.-X., Wang, P., Xu, W., and Hensen, E.J.M., Engineering, 2017, vol. 3, p. 467.

    Article  Google Scholar 

  6. Larichev, Yu.V. and Tuzikov, F.V., J. Appl. Crystallogr., 2013, vol. 46, p. 752.

    Article  CAS  Google Scholar 

  7. Larichev, Yu.V. and Tuzikov, F.V., Kinet. Catal., 2013, vol. 54, no. 5, p. 632.

    Article  CAS  Google Scholar 

  8. Gommes, C.J., Asset, T., and Drnec, J., J. Appl. Crystallogr., 2019, vol. 52, p. 507.

    Article  CAS  Google Scholar 

  9. Salnikova, K.E., Matveeva, V.G., Larichev, Yu.V., Bykov, A.V., Demidenko, G.N., Shkileva, I.P., and Sulman, M.G., Catal. Today, 2019, vol. 329, p. 142.

    Article  CAS  Google Scholar 

  10. Larichev, Yu.V., Yeletsky, P.M., and Yakovlev, V.A., J. Phys. Chem. Solids, 2015, vol. 87, p. 58.

    Article  CAS  Google Scholar 

  11. Larichev, Yu.V., J. Phys.: Conf. Ser., 2017, vol. 848, 012025.

    Google Scholar 

  12. Chernonosova, V.S., Kvon, R.I., Stepanova, A.O., Larichev, Yu.V., Karpenko, A.A., Chelobanov, B.P., Kiseleva, E.V., and Laktionov, P.P., Polym. Adv. Technol., 2017, vol. 28, p. 819.

    Article  CAS  Google Scholar 

  13. Taratayko, A., Larichev, Yu., Zaikovskii, V., Mikheeva, N., and Mamontov, G., Catal. Today, 2021, vol. 375, p. 576.

    Article  CAS  Google Scholar 

  14. Salnikova, K.E., Larichev, Yu.V., Sulman, E.M., Bykov, A.V., Sidorov, A.I., Demidenko, G.N., Sulman, M.G., Bronstein, L.M., and Matveeva, V.G., ChemPlusChem, 2020, vol. 85, p. 1697.

    Article  CAS  Google Scholar 

  15. Anderson, J.R., Structure of Metallic Catalysts, London: Academic, 1975.

    Google Scholar 

  16. Trueba, M. and Trasatti, S.P., Eur. J. Inorg. Chem., 2005, vol. 2005, p. 3393.

    Article  Google Scholar 

  17. Pakharukova, V.P., Pakharukov, I.Yu., Bukhtiyarov, V.I., and Parmon, V.N., Appl. Catal., A, 2014, vol. 486, p. 12.

  18. Busca, G., Catal. Today, 2014, vol. 226, p. 2.

    Article  CAS  Google Scholar 

  19. Larichev, Yu.V., Chem. Pap., 2021, vol. 75, p. 2059.

    Article  CAS  Google Scholar 

  20. Larichev, Yu.V., Kinet. Catal., 2021, vol. 62, no. 4, p. 528.

    Article  CAS  Google Scholar 

  21. Yeletsky, P.M., Yakovlev, V.A., Mel’gunov, M.S., and Parmon, V.N., Microporous Mesoporous Mater., 2009, vol. 121, p. 34.

    Article  CAS  Google Scholar 

  22. Tsubota, S., Haruta, M., Kobayashi, T., Ueda, A., and Nakahara, Y., Stud. Surf. Sci. Catal., 1991, vol. 63, p. 695.

    Article  CAS  Google Scholar 

  23. Konarev, P.V., Petoukhov, M.V., Volkov, V.V., and Svergun, D.I., J. Appl. Crystallogr., 2006, vol. 39, p. 277.

    Article  CAS  Google Scholar 

  24. Yakovlev, V.A., Yeletsky, P.M., Lebedev, M.Yu., Ermakov, D.Yu., and Parmon, V.N., Chem. Eng. J., 2007, vol. 134, p. 246.

    Article  CAS  Google Scholar 

  25. Lebedeva, M.V., Yeletsky, P.M., Ayupov, A.B., Kuznetsov, A.N., Yakovlev, V.A., and Parmon, V.N., Mater. Renewable Sustainable Energy, 2015, vol. 4, p. 20. https://doi.org/10.1007/s40243-015-0061-x

    Article  Google Scholar 

  26. Shen, Y., Renewable Sustainable Energy Rev., 2017, vol. 80, p. 453.

    Article  Google Scholar 

  27. Adam, F., Appaturi, J.N., and Iqbal, A., Catal. Today, 2012, vol. 190, p. 2.

    Article  CAS  Google Scholar 

  28. Kaya, G.G. and Deveci, H., J. Ind. Eng. Chem., 2020, vol. 89, p. 13.

    Article  Google Scholar 

  29. Farhadian, N., Liu, S., Asadi, A., Shahlaei, M., and Moradi, S., J. Mol. Liq., 2021, vol. 321, p. 114896.

    Article  CAS  Google Scholar 

  30. Ying, Y.P., Kamarudin, S.K., and Masdar, M.S., Int. J. Hydrogen Energy, 2018, vol. 43, p. 16068.

    Article  CAS  Google Scholar 

  31. Mahani, A.A., Motahari, S., and Mohebbi, A., Mar. Pollut. Bull., 2018, vol. 129, p. 438.

    Article  Google Scholar 

  32. Rahman, I.A. and Padavettan, V., J. Nanomater., 2012, vol. 2012. 132424.

    Article  Google Scholar 

  33. Malkar, V.V., Mukherjee, T., and Kapoor, S., J. Nanostruct. Chem., 2015, vol. 5, p. 1.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to A.V. Ishchenko, D.A. Zyuzin, A.L. Nuzhdin, and L.A. Kovtunova for their assistance in this study and to the “High Technologies and Analysis of Nanosystems” Multiaccess Center of Novosibirsk State University for providing measurement equipment.

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation under the government contract at the Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. АААА-А21-121011390053-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Larichev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by L. Smolina

Abbreviations and notation: TEM, transmission electron microscopy, XRD, X-ray diffraction analysis, SAXS, small-angle X-ray scattering, CSR, coherent scattering region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larichev, Y.V. Development of Small-Angle X-Ray Scattering Methods for Analysis of Supported Catalysts and Nanocomposites. Kinet Catal 62, 820–827 (2021). https://doi.org/10.1134/S0023158421060100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421060100

Keywords:

Navigation