Skip to main content
Log in

Room Temperature Interaction of NO2 with Palladium Nanoparticles Supported on a Nonactivated Surface of Highly Oriented Pyrolytic Graphite (HOPG)

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

A sample of palladium nanoparticles with an average size of ~5 nm on the surface of highly oriented pyrolytic graphite (HOPG) was prepared by vacuum deposition. With the use of X-ray photoelectron spectroscopy (XPS), it was found that the interaction of the resulting Pd/HOPG sample with nitrogen dioxide at room temperature and a pressure of 10–6 mbar led to the oxidation of graphite. In this case, palladium particles retained their metallic state. A comparison with the behavior of a palladium sample supported onto HOPG activated by ion etching under similar conditions showed that structural defects on the graphite surface did not play a decisive role in the oxidation of graphene layers. A comparison with the results obtained upon the interaction of NO2 with Pt nanoparticles supported on the HOPG surface was made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Smirnov, M.Yu., Kalinkin, A.V., Sorokin, A.M., and Bukhtiyarov, V.I., Kinet. Catal., 2020, vol. 61, no. 4, p. 637.

    Article  CAS  Google Scholar 

  2. Parker, D.H. and Koel, B.E., J. Vac. Sci. Technol., A, 1990, vol. 8, p. 2585.

    Article  CAS  Google Scholar 

  3. Zheng, G. and Altman, E.I., Surf. Sci., 2000, vol. 462, p. 151.

    Article  CAS  Google Scholar 

  4. Kalinkin, A.V., Sorokin, A.M., Smirnov, M.Yu., and Bukhtiyarov, V.I., Kinet. Catal., 2014, vol. 55, p. 354.

    Article  CAS  Google Scholar 

  5. Kalinkin, A.V., Smirnov, M.Yu., Bukhtiyarov, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2015, vol. 56, p. 796.

    Article  CAS  Google Scholar 

  6. Smirnov, M.Yu., Vovk, E.I., Nartova, A.V., Kalinkin, A.V., and Bukhtiyarov, V.I., Kinet. Catal., 2018, vol. 59, p. 653.

    Article  CAS  Google Scholar 

  7. Kalinkin, A.V., Smirnov, M.Y., Sorokin, A.M., Gladky, A.Yu., Bukhtiyarov, V.I., and Klembovskii, I.O., J. Struct. Chem., 2018, vol. 59, p. 1726.

    Article  CAS  Google Scholar 

  8. Smirnov M.Yu., Kalinkin A.V., Bukhtiyarov A.V., Prosvirin I.P., Bukhtiyarov V.I., J. Phys. Chem. C, 2016, vol. 120, p. 10419.

    Article  CAS  Google Scholar 

  9. Afanas’ev, V.P., Bocharov, G.S., Eletskii, A.V., Ridzel, O.Yu., Kaplya, P.S., and Koppen, M., J. Vac. Sci. Technol., B, 2017, vol. 35, p. 041804.

    Article  Google Scholar 

  10. Zhu, C., Hao, X., Liu, Y., Wu, Y., and Wang, J., Appl. Surf. Sci., 2018, vol. 427, p. 1137.

    Article  CAS  Google Scholar 

  11. Rousseau, B., Estrade-Szwarckopf, H., Thomann, A.-L., and Brault, P., Appl. Phys. A, 2003, vol. 77, p. 591.

    Article  CAS  Google Scholar 

  12. Paredes, J.I., Martınez-Alonso, A., and Tascon, J.M.D., Langmuir, 2007, vol. 23, p. 8932.

    Article  CAS  Google Scholar 

  13. Utsumi, S., Honda, H., Hattori, Y., Kanoh, H., Takahashi, K., Sakai, H., Abe, M., Yudasaka, M., Iijima, S., and Kaneko, K., J. Phys. Chem. C, 2007, vol. 111, p. 5572.

    Article  CAS  Google Scholar 

  14. Figueiredo, J.L. and Pereira, M.F.R., Catal. Today, 2010, vol. 150, p. 2.

    Article  CAS  Google Scholar 

  15. Blume, R., Rosenthal, D., Tessonnier, J.-P., Li, H., Knop-Gericke, A., and Schlogl, R., ChemCatChem, 2015, vol. 7, p. 2871.

    Article  CAS  Google Scholar 

  16. Favaro, M., Agnoli, S., Perini, L., Durante, C., Gennaro, A., and Granozzi, G., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 2923.

    Article  CAS  Google Scholar 

  17. Nosova, L.V., Stenin, M.V., Nogin, Yu.N., and Ryndin, Yu.A., Appl. Surf. Sci., 1992, vol. 55, p. 43.

    Article  CAS  Google Scholar 

  18. Aiyer, H.N., Vijayakrishnan, V., Subbanna, G.N., and Rao, C.N.R., Surf. Sci., 1994, vol. 313, p. 392.

    Article  CAS  Google Scholar 

  19. Oktar, N., Mitome, J., Holmgreen, E.M., and Ozkan, U.S., J. Mol. Catal. A: Chem., 2006, vol. 259 P. 171.

    Article  CAS  Google Scholar 

  20. Fiordaliso, E.M., Murphy, S., Nielsen, R.M., Dahl, S., and Chorkendorff, I., Surf. Sci., 2012, vol. 606, p. 263.

    Article  CAS  Google Scholar 

  21. Gao, J. and Guo, Q., Appl. Surf. Sci., 2012, vol. 258, p. 5412.

    Article  CAS  Google Scholar 

  22. Porsgaard, S., Ono, L.K., Zeuthen, H., Knudsen, J., Schnadt, J., Merte, L.R., Chevallier, J., Helveg, S., Salmeron, M., Wendt, S., and Besenbacher, F., ChemPhysChem, 2013, vol. 14, p. 1553.

    Article  CAS  Google Scholar 

  23. Kettner, M., Stumm, C., Schwarz, M., Schuschke, C., and Libuda, J., Surf. Sci., 2019, vol. 679, p. 64.

    Article  CAS  Google Scholar 

  24. Morales, C., Díaz-Fernández, D., Mossanek, R.J.O., Abbate, M., Méndez, J., Pérez-Dieste, V., Escudero, C., Rubio-Zuazo, J., Prieto, P., and Soriano, L., Appl. Surf. Sci., 2020, vol. 509, p. 145118.

    Article  CAS  Google Scholar 

  25. Conrad, H., Ertl, G., Kuppers, J., and Latta, E., Surf. Sci. 1977, vol. 65, p. 245.

    Article  CAS  Google Scholar 

  26. Zemlyanov, D., Azalos-Kiss, B., Kleimenov, E., Teschner, D., Zafeiratos, S., Havecker, M., Knop-Gericke, A., Schlogl, R., Gabasch, H., Unterberger, W., Hayek, K., and Klotzer, B., Surf. Sci., 2006, vol. 600, p. 983.

    Article  CAS  Google Scholar 

  27. Gabasch, H., Unterberger, W., Hayek, K., Klotzer, B., Kleimenov, E., Teschner, D., Zafeiratos, S., Havecker, M., Knop-Gericke, A., Schlogl, R., Han, J., Ribeiro, F.H., Aszalos-Kiss, B., Curtin, T., and Zemlyanov, D., Surf. Sci., 2006, vol. 600, p. 2980.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies are conducted using the equipment of the Center of collective use “National Center of Catalyst Research”.

Funding

This work was carried out at the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences within the framework of a state contract (project no. AAAA-A17-117041710078-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Smirnov.

Ethics declarations

The authors have no conflicts of interest to disclose.

Additional information

Translated by V. Makhlyarchuk

Abbreviations and notation: HOPG, highly oriented pyrolytic graphite; XPS, X-ray photoelectron spectroscopy; STM, scanning tunneling microscopy; Eb, binding energy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, M.Y., Kalinkin, A.V., Sorokin, A.M. et al. Room Temperature Interaction of NO2 with Palladium Nanoparticles Supported on a Nonactivated Surface of Highly Oriented Pyrolytic Graphite (HOPG). Kinet Catal 61, 907–911 (2020). https://doi.org/10.1134/S0023158420060142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420060142

Keywords:

Navigation