Skip to main content
Log in

Mechanisms of the Catalytic Hydrochlorination of Acetylene: Active Sites, Isotope Effects, and Stereoselectivity

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The mechanisms of acetylene vapour-phase hydrochlorination over chloro complexes of noble metals were reviewed. The nature of the active sites of heterogeneous catalysts, isotope effects of HCl/DCl, stereochemistry of reaction products, possible stepwise mechanisms, and mechanisms of individual steps were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. In aqueous solutions, the PtII chloride complexes catalyze the hydrochlorination of acetylene, while the PtIV chloride complexes do not show any appreciable catalytic activity [29].

  2. For terminal carbonyls, νСО is generally shifted toward long waves relative to the 2143 cm–1 of free СО and lies between 2125 and 1850 cm–1 [38].

  3. The stretching vibrations of the С≡С triple bond generally show themselves in the range 2260–2190 cm–1 [41]. A small bathochromic shift is the consequence of the binding of acetylene in the π-complex.

  4. The stoichiometric consequence of the acetylene chloropalladation step is the formation of a PdII chlorovinyl derivative and adjacent palladium complex lying on the (100) crystallographic plane with a coordination vacancy that bears a local positive charge.

REFERENCES

  1. Ciacci, L., Passarini, F., and Vassura, I., Resour., Conserv. Recycl., 2017, vol. 123, p. 108.

    Article  Google Scholar 

  2. Johnston, P., Carthey, N., and Hutchings, G.J., J. Am. Chem. Soc., 2015, vol. 137, p. 14 548.

    Article  CAS  Google Scholar 

  3. Flid, M.R., Katal.Prom-sti., 2009, vol. 1, p. 285.

    Google Scholar 

  4. Meng, X., Ding, Q., Wang, Q., and Duan, L., Energy Environ.Focus, 2014, vol. 3, no. 1, p. 37.

    Google Scholar 

  5. Polyvinyl Chloride (PVC) – Market Study Ceresana. http://www.ceresana.com/en/market-studies/plastics/polyvinyl-chloride/ (cited May 06, 2019).

  6. Schellerer, K.-M., Kufner, Th., Mieden, O., and Vogel, E., Kunstoffe Int., 2016, vol. 10, p. 28.

    Google Scholar 

  7. Magistro, A.J. and Cowfer, J.A., J. Chem. Educ., 1986, vol. 63, p. 1056.

    Article  CAS  Google Scholar 

  8. Zhang, J., Liu, N., Li, W., and Dai, B., Front. Chem. Sci. Eng., 2011, vol. 5, p. 514.

    Article  CAS  Google Scholar 

  9. Dai, B., Wang, Q., Yu, F., and Zhu, M., Sci. Rep., 2015, vol. 5.

  10. Zhou, K., Jia, J., Li, C., Xu, H., Zhou, J., Luo, G., and Wei, F., Green Chem., 2015, vol. 17, p. 356.

    Article  CAS  Google Scholar 

  11. Ren, W., Duan, L., Zhu, Z., Du, W., An, Z., Xu, L., Zhang, C., Zhuo, Y., and Chen, C., Environ. Sci. Technol., 2014, vol. 48, p. 2321.

    CAS  PubMed  Google Scholar 

  12. Temkin, O.N., Shestakov, G.K., and Treger, Yu.A., Atsetilen: khimiya, mekhanizmy reaktsii i tekhnologiya (Acetylene: Chemistry, Reaction Mechanisms and Technology), Moscow: Khimiya, 1991.

  13. Liu, X., Conte, M., Elias, D., Lu, L., Morgan, D.J., Freakley, S.J., Johnston, P., Kiely, C.J., and Hutchings, G.J., Catal. Sci. Technol., 2016, vol. 6, p. 5144.

    Article  CAS  Google Scholar 

  14. Minamata Convention on Mercury. http://www.mercuryconvention.org/ (Cited May 06, 2019).

  15. Davies, C.J., Miedziak, P.J., Brett, G.L., and Hutchings, G.J., Chin. J. Catal., 2016, vol. 37, p. 1600.

    Article  CAS  Google Scholar 

  16. Zhong, J., Xu, Y., and Liu, Z., Green Chem., 2018, vol. 20, p. 2412.

    Article  CAS  Google Scholar 

  17. Trotuş, I.-T., Zimmermann, T., and Schüth, F., Chem. Rev., 2014, vol. 114, p. 1761.

    Article  CAS  Google Scholar 

  18. Xu, H. and Luo, G., J. Ind. Eng. Chem., 2018, vol. 65, p. 13.

    Article  CAS  Google Scholar 

  19. Eisenstein, O. and Hoffmann, R., J. Am. Chem. Soc., 1980, vol. 102, no. 19, p. 6148.

    Article  CAS  Google Scholar 

  20. Germain, J.E., Catalytic Conversion of Hydrocarbons, London: Academic, 1969.

    Google Scholar 

  21. Kazanskii, B.V., Usp. Khim., 1988, vol. 57, no. 12, p. 1937.

    Article  CAS  Google Scholar 

  22. Lunin, V.V. and Romanovskii, B.V., Vestn. Mosk. Un-ta, Ser. 2, 1999.

  23. Mitchenko, S.A., Theor. Exp. Chem., 2007, vol. 43, no. 4, p. 211.

    Article  CAS  Google Scholar 

  24. Mitchenko, S.A., Kinet. Catal., 1998, vol. 39, no. 6, p. 859.

    CAS  Google Scholar 

  25. Shubin, A.A., Mitchenko, R.S., and Vdovichenko, A.N., Russ. J. Org. Chem., 2006, vol. 42, no. 5, p. 768.

    Article  CAS  Google Scholar 

  26. Mitchenko, S.A., Krasnyakova, T.V., and Zhikharev, I.V., Theor. Exp. Chem., 2008, vol. 44, no. 5, p. 316.

    Article  CAS  Google Scholar 

  27. Melander, L. and Saunders, W.H., Reaction Rates of Isotopic Molecules, New York: Wiley, 1980.

  28. Mitchenko, S.A, Ananikov, V.P., and Beletskaya, I.P., Russ. J. Org. Chem., 1998, vol. 34, no. 12, p. 1786.

    CAS  Google Scholar 

  29. Sil’chenko, L.A., Panova, S.A., Shestakov, G.K., and Temkin, O.N., Kinet. Catal., 1997, vol. 38, no. 6, p. 790.

    Google Scholar 

  30. Mitchenko, S.A., Khomutov, E.V., Shubin, A.A., and Shul’ga, Yu.M., Theor. Exp. Chem., 2003, vol. 39, no. 4, p. 255.

    Article  CAS  Google Scholar 

  31. Mitchenko, S.A., Khomutov, E.V., Shubin, A.A., and Shul’ga, Yu.M., J. Mol. Catal. A: Chem., 2004, vol. 212, p. 345.

    Article  CAS  Google Scholar 

  32. Barker, C., James, P.L., and Yarwood, J., Faraday Discuss. Chem. Soc., 1977, no. 64, p. 188.

  33. Mitchenko, S.A., Krasnyakova, T.V., and Zhikharev, I.V., Theor. Exp. Chem., 2012, vol. 48, no. 3, p. 157.

    Article  CAS  Google Scholar 

  34. Mitchenko, S.A. and Krasnyakova, T.V., Kinet. Catal., 2014, vol. 55, no. 6, p. 722.

    Article  CAS  Google Scholar 

  35. Mitchenko, S.A., Krasnyakova, T.V., and Zhikharev, I.V., Kinet. Catal., 2009, vol. 50, no. 5, p. 734.

    Article  CAS  Google Scholar 

  36. Mitchenko, S.A., Khomutov, E.V., Kovalenko, V.V., and Beletskaya, I.P., Kinet. Catal., 2002, vol. 43, no. 4, p. 469.

    Article  CAS  Google Scholar 

  37. Mitchenko, S.A., Khomutov, E.V., and Kovalenko, V.V., Inorg. Chim. Acta, 2001, vol. 320, nos. 1–2, p. 31.

    Article  CAS  Google Scholar 

  38. Collman, J.P., Hegedus, L.S., Norton, J.R., and Finke, R.G., Principles and Applications of Organotransition Metal Chemistry, Mill Valley: University Science Books, 1987, p. 859.

    Google Scholar 

  39. Mitchenko, R.S., Shubin, A.A., and Krasnyakova, T.V., Theor. Exp. Chem., 2006, vol. 42, no. 5, p. 314.

    Article  CAS  Google Scholar 

  40. Mitchenko, S.A., Krasnyakova, T.V., Mitchenko, R.S., and Korduban, A.M., J. Mol. Catal. A: Chem., 2007, vol. 275, p. 101.

    Article  CAS  Google Scholar 

  41. Nakanisi, K., Infrared Absorption Spectroscopy. Practical, San Francisco: Holden Day, 1962.

  42. Mitchenko, S.A., Krasnyakova, T.V., and Zhikharev, I.V., Theor. Exp. Chem., 2010, vol. 46, no. 1, p. 32.

    Article  CAS  Google Scholar 

  43. Krasnyakova, T.V., Zhikharev, I.V., Mitchenko, R.S., Burkhovetski, V.I., Korduban, A.M, Kryshchuk, T.V., and Mitchenko, S.A., J. Catal., 2012, vol. 288, p. 33.

    Article  CAS  Google Scholar 

  44. Mitchenko, S.A., Krasnyakova, T.V., and Zhikharev, I.V., Kinet. Catal., 2009, vol. 50, no. 5, p. 734.

    Article  CAS  Google Scholar 

  45. Mitchenko, R.S., Shubin, A.A., and Vdovichenko, A.N., Theor. Exp. Chem., 2006, vol. 42, no. 3, p. 186.

    Article  CAS  Google Scholar 

  46. Herberhold, M., Metal Complexes: Complexes with Mono-Olefinic Liga, Amsterdam: Elsevier, 1974.

    Google Scholar 

  47. Mitchenko, S.A., Khomutov, E.V., Shubin, A.A., and Beletskaya, I.P., Kinet. Catal., 2004, vol. 45, no. 3, p. 391.

    Article  CAS  Google Scholar 

  48. JCPDS: International Centre for Diffraction Data, no. 25-1203.

  49. JCPDS: International Centre for Diffraction Data, no. 9-367.

  50. JCPDS: International Centre for Diffraction Data, no. 12-412.

  51. Mitchenko, S.A., Zamashchikov, V.V., and Shubin, A.A., Kinet. Catal., 1993, vol. 34, no. 3, p. 479.

    CAS  Google Scholar 

  52. Flid, M.R. and Treger, Yu.A., Vinilkhlorid: khimiya i tekhnologiya (Vinyl Chloride: Chemistry and Technology), Moscow: Kalvis, 2008, vol. 1.

  53. Mitchenko, S.A., Khomutov, E.V., and Shubin, A.A., Theor. Exp. Chem., 2003, vol. 39, no. 2, p. 96.

    Article  CAS  Google Scholar 

  54. Luinstra, G.A., Wang, L., Stahl, S.S., Labinger, J.A., and Bercaw, J.E., J. Organomet. Chem., 1995, vol. 504, p. 75.

    Article  CAS  Google Scholar 

  55. Gordon, A.J. and Ford, R.A., The Chemist’s Companion: A Handbook of Practical Data, Techniques, and References, New York: Wiley, 1973.

  56. Paulusse, J.M.J. and Sijbesma, R.P., Chem. Commun., 2008, p. 4416.

  57. Ananikov, V.P., Musaev, D.G., and Morokuma, K., Organometallics, 2005, vol. 24, p. 715.

    Article  CAS  Google Scholar 

  58. Gurvich, L.V., Karachevtseva, G.V., Kondrat’eva, N.V., and Lebedev, Yu.A., Energii razryva khimicheskikh svyazei. Potentsialy ionizatsii i srodstvo k elektronu (The Energy of Breaking Chemical Bonds. Ionization Potentials and Electron Affinity), Moscow: Nauka, 1974.

  59. Hill, G.S., Rendina, L.M., and Puddephatt, R., Organometallics, 1995, vol. 14, p. 4966.

    Article  CAS  Google Scholar 

  60. Simonov, P.A., Filimonova, S.V., Kryukova, G.N., Moroz, E.M., Likholobov, V.A., Kuretzky, T., and Boehm, H.P., Carbon, 1999, vol. 37, p. 591.

    Article  CAS  Google Scholar 

  61. Simonov, P.A., Moroz, E.M., Chuvilin, A.L., Kolomiichuk, V.N., Boronin, A.I., and Likholobov, V.A., Stud. Surf. Sci. Catal., 1995, vol. 91, p. 977.

    Article  CAS  Google Scholar 

  62. Moroz, E.M., Simonov, P.A., Bogdanov, S.V., and Chuvilin, A.L., Mater. Sci. Forum, 2000, vol. 321, p. 1074.

    Article  Google Scholar 

  63. Ryndin, Yu.A., Alekseev, O.S., Simonov, P.A., and Likholobov, V.A., J. Mol. Catal., 1989, vol. 55, p. 109.

    Article  CAS  Google Scholar 

  64. Simonov, P.A., Troitskii, S.Yu., and Likholobov, V.A., Kinet. Catal., 2000, vol. 41, no. 2, p. 255.

    Article  CAS  Google Scholar 

  65. Simonov, P.A., Romanenko, A.V., Prosvirin, I.P., Moroz, E.M., Boronin, A.I., Chuvilin, A.L., and Likholobov, V.A., Carbon, 1997, vol. 35, no. 1, p. 73.

    Article  CAS  Google Scholar 

  66. Simonov, P.A., Semikolenov, V.A., Likholobov, V.A., Voronin, A.I., and Ermakov, Yu.I., Izv. Akad. Nauk SSSR, Ser. Khim., 1988, no. 12, p. 2719.

  67. Simonov, P.A., Chuvilin, A.L., and Likholobov, V.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1989, no. 9, p. 1952.

  68. Simonov, P.A., Moroz, E.M., Likholobov, V.A., and Plaksin, G.V., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, no. 7, p. 1478.

  69. Simonov, P.A., Romanenko, A.V., Prosvirin, I.P., Kryukova, G.N., Chuvilin, A.L., Bogdanov, S.V., Moroz, E.M., and Likholobov, V.A., Stud. Surf. Sci. Catal., 1998, vol. 118, p. 15.

    Article  CAS  Google Scholar 

  70. Simakova, O.A., Simonov, P.A., Romanenko, A.V., and Simakova, I.L., React. Kinet. Catal., 2008, vol. 95, p. 3.

    Article  CAS  Google Scholar 

  71. Song, Q.L., Wang, S.J., Shen, B.X., and Zhao, J.G., Pet. Sci. Technol., 2010, vol. 28, p. 1825.

    Article  CAS  Google Scholar 

  72. Wang, L., Wang, F., and Wang, J., Catal. Commun., 2015, vol. 65, p. 41.

    Article  CAS  Google Scholar 

  73. Wang, L., Wang, F., Wang, J., Tang, X., Zhao, Y., Yang, D., Jia, F., and Hao, T., React. Kinet., Mech. Catal., 2013, vol. 110, p. 187.

    Article  CAS  Google Scholar 

  74. Wang, L., Wang, F., and Wang, J., Catal. Commun., 2016, vol. 83. P. 9.

    Article  CAS  Google Scholar 

  75. Wang, F., Wang, L., Wang, J., Zhao, Y., Wang, Y., and Yang, D., React. Kinet., Mech. Catal., 2015, vol. 114, p. 725.

    Article  CAS  Google Scholar 

  76. Krasnyakova, T.V., Nikitenko, D.V., Khomutova, E.V., and Mitchenko, S.A., Kinet. Catal., 2017, vol. 58, no. 5, p. 533.

    Article  CAS  Google Scholar 

  77. Evers, J., Beck, W., Gobel, M., Jakob, S., Mayer, P., Oehlinger, G., Rotter, M., and Klapotke, T.M., Angew. Chem., 2010, vol. 49, p. 5677.

    Article  CAS  Google Scholar 

  78. Nkosi, B., Coville, N.J., and Hutchings, G.J., J. Chem. Soc., Chem. Commun., 1988, p. 71.

  79. Nkosi, B., Coville, N.J., and Hutchings, G.J., Appl. Catal., 1988, vol. 43, p. 33.

    Article  CAS  Google Scholar 

  80. Nkosi, B., Coville, N.J., Hutchings, G.J., Adams, M.D., Friedl, J., and Wagner, F.E., J. Catal., 1991, vol. 128, p. 366.

    Article  CAS  Google Scholar 

  81. Nkosi, B., Adams, M.D., Coville, N.J., and Hutchings, G.J., J. Catal., 1991, vol. 128, p. 378.

    Article  CAS  Google Scholar 

  82. Hutchings, G.J., Gold Bull., 1996, vol. 29, p. 123.

    Article  CAS  Google Scholar 

  83. Conte, M., Carley, A.F., Heirene, C., Willock, D.J., Johnston, P., Herzing, A.A., Kiely, C.J., and Hutchings, G.J., J. Catal., 2007, vol. 250, p. 231.

    Article  CAS  Google Scholar 

  84. Hutchings, G.J., Top. Catal., 2008, vol. 48, p. 55.

    Article  CAS  Google Scholar 

  85. Hutchings, G.J., Gold Bull., 2009, vol. 42, p. 260.

    Article  CAS  Google Scholar 

  86. Conte, M., Davies, C.J., Morgana, D.J., Davies, T.E., Elias, D.J., Carley, A.F., Johnston, P., and Hutchings, G.J., J. Catal., 2013, vol. 297, p. 128.

    Article  CAS  Google Scholar 

  87. Conte, M., Davies, C.J., Morgan, D.J., Carley, A.F., Johnston, P., and Hutchings, G.J., Catal. Lett., 2014, vol. 144, p. 1.

    Article  CAS  Google Scholar 

  88. Hutchings, G.J., Top. Catal., 2014, vol. 57, p. 1265.

    Article  CAS  Google Scholar 

  89. Johnston, P., Carthey, N., and Hutchings, G.J., J. Am. Chem. Soc., 2015, vol. 137, p. 14 548.

    Article  CAS  Google Scholar 

  90. Malta, G., Freakley, S.J., Kondrat, S.A., and Hutchings, G.J., Catal. Commun., 2017, vol. 53, p. 11 733.

    Google Scholar 

  91. Malta, G., Kondrat, S.A., Freakley, S.J., Davies, C.J., Dawson, S., Liu, X., Lu, L., Dymkowski, K., Fernandez-Alonso, F., Mukhopadhyay, S., Gibson, E.K., Wells, P.P., Parker, S.F., Kiely, C.J., and Hutchings, G.J., ACS Catal., 2018, vol. 8, p. 8493.

    Article  CAS  Google Scholar 

  92. Zhao, Y., Zhao, F., and Kang, L., J. Mol. Model., 2018, vol. 24, p. 61.

    Article  CAS  Google Scholar 

  93. Gu, J., Du, Q., Han, Y., He, Z., Li, W., and Zhang, J., Phys. Chem. Chem. Phys., 2014, vol. 116, p. 25 498.

    Article  CAS  Google Scholar 

  94. Zhang, J., He, Z., Lib, W., and Han, Y., RSC Adv., 2012, p. 4814.

    Google Scholar 

  95. Zhu, M., Kang, L., Su, Y., Zhang, S., and Dai, B., Can. J. Chem., 2013, vol. 91, p. 120.

    Article  CAS  Google Scholar 

  96. Gong, W., Zhao, F., and Kang, L., Comput. Theor. Chem., 2018, vol. 1130, p. 83.

    Article  CAS  Google Scholar 

  97. Zhao, F., Wang, Y., and Kang, L., Can. J. Chem., 2016, vol. 94, p. 842.

    Article  CAS  Google Scholar 

  98. Wang, Y., Zhu, M., Kang, L., and Dai, B., RSC Adv., 2014, vol. 4, p. 38 466.

    Article  CAS  Google Scholar 

  99. Xu, H., Meng, S., and Luo, G., Catal. Sci. Technol., 2018, vol. 8, p. 1176.

    Article  CAS  Google Scholar 

  100. Wan, F., Chao, S., Guan, Q., Wang, G.C., and Li, W., Catal. Commun., 2017, vol. 101, p. 120.

    Article  CAS  Google Scholar 

  101. Wegner, H.A. and Auzias, M., Angew. Chem., 2011, vol. 50, p. 8236.

    Article  CAS  Google Scholar 

  102. Reutov, O.A., Kurts, A.L., and Butin, K.P., Organicheskaya khimiya (Organic Chemistry), Moscow: Moscow State University, 1999.

Download references

Funding

This study was financially supported by the Ministry of Education and Science of the Russian Federation under the government contract for R&D (application no. 10.2980.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mitchenko.

Additional information

Translated by L. Smolina

Abbreviations: VCM, vinyl chloride monomer; PVC, polyvinyl chloride; DCE, dichloroethane; KIE, kinetic isotope effect; γ, product isotope effect; TEMPO, 2,2,6,6-tetramethylpiperidin-1-yl)oxyl; DRIFT, diffuse reflection infrared Fourier transform spectroscopy; EDS SEM, energy dispersive X-ray spectroscopy with scanning electron microscopy; TOF, specific catalytic activity (turnover frequency); HAADF-STEM, high-angle annular dark-field scanning transmission electron microscopy; XAFS, X-ray absorption fine structure spectroscopy; XPS, X-ray photoelectron spectroscopy; EPR, electron paramagnetic resonance; NMR, nuclear magnetic resonance; HRTEM, high-resolution transmission electron microscopy; SAXS, small-angle X-ray scattering; WAXS, wide-angle X-ray scattering; RDF, radial distribution function; RED, radial electron density distribution; DFT, density functional theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnyakova, T.V., Nikitenko, D.V. & Mitchenko, S.A. Mechanisms of the Catalytic Hydrochlorination of Acetylene: Active Sites, Isotope Effects, and Stereoselectivity. Kinet Catal 61, 58–79 (2020). https://doi.org/10.1134/S0023158420010036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420010036

Keywords:

Navigation