Skip to main content
Log in

Interaction of Glutathione with Hydrogen Peroxide: A Kinetic Model

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of the interaction of glutathione (GSH) with hydrogen peroxide (H2O2) was studied. It was shown that the rate of GSH consumption nonlinearly depended on reactant concentrations and the process was accompanied by the appearance of radicals with a relatively low rate, which was a fraction of a percent of the rate of GSH consumption. Based on the experimental results and literature data on the reactions of GSH with H2O2 and thiyl radicals, a kinetic model of the complex interaction of GSH and H2O2 in an aqueous solution at 37°C was proposed. The model includes 15 quasi-elementary reactions with corresponding rate constants, including the formation of the intermediate complex GSH–H2O2 and its subsequent reactions with the formation of final products. Computer simulation based on the model developed satisfactorily described the reaction kinetics in a wide range of reactant concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Poole, L.B., Free Radical Biol. Med., 2015, vol. 80, p. 148.

    Article  CAS  Google Scholar 

  2. Winterbourn, C.C. and Metodiewa, D., Free Radical Biol. Med., 1999, vol. 27, p. 322.

    Article  CAS  Google Scholar 

  3. Kheirabadi, R. and Izadyar, M., J. Phys. Chem. A, 2016, vol. 51, no. 120, p. 10 108. https://doi.org/10.1021/acs.jpca.6b11437

    Article  CAS  Google Scholar 

  4. Kritzinger, E.C., Bauer, F.F., and du Toit, W.J., J. Agric. Food Chem., 2013, vol. 2, no. 61, p. 269. https://doi.org/10.1021/jf303665z

    Article  CAS  Google Scholar 

  5. Saito, S. and Kawabata, J., J. Agric. Food Chem., 2004, vol. 26, no. 52, p. 8163.

    Article  CAS  Google Scholar 

  6. Winterbourn, C.C., and Metodieva, D., Methods Enzymol., 1995, no. 251, p. 81.

  7. Gambuti, A., Han, G., Peterson, A.L., and Waterhouse, A.L., Am. J. Enol. Vitic., 2015, no. 66, p. 411.

  8. Wang, Y., Qiao, M., Mieyal, J.J., Asmis, L.M., and Asmis, R., Free Radical Biol. Med., 2006, no. 41, p.775.

  9. Schafer, F.Q. and Buettner, G.R., Free Radical Biol. Med., 2001, vol. 11, no. 30, p. 1191.

    Article  Google Scholar 

  10. Anderson, M.E., Chem.– Biol. Interact., 1998, no. 112, p. 1.

  11. Penninckx, M.J., Enzyme Microb. Technol., 2000, no. 26, p. 737.

  12. Messens, J. and Collet, J.F., Antioxid. Redox Signaling, 2013, vol. 18, no. 13, p. 1205. https://doi.org/10.1089/ars.2012.5156

    Article  CAS  Google Scholar 

  13. Sies, H., Oxidative Stress, London: Academic Press, 1985, p. 1.

    Google Scholar 

  14. Sies, H. and Jones, D.P., Encyclopedia of Stress, San Diego: Elsevier, 2007, vol. 3, p. 45.

    Google Scholar 

  15. Reuter, S., Gupta, S.C., Chaturvedi, M.M., and Aggarwal, B.B., Free Radical. Biol. Med., 2010, vol. 49, no. 11, p. 1603.

    Article  CAS  Google Scholar 

  16. Hopkins, F.G. and Morgan, E.J., Biochem J., 1936, vol. 8, no. 30, p. 1446.

    Article  Google Scholar 

  17. Hopkins, F.G. and Morgan, E.J., Biochem J., 1938, vol. 3, no. 32, p. 611.

    Article  Google Scholar 

  18. Kroemer, G. and Reed, J.C., Nat. Med., 2000, vol. 5, no. 6, p. 513.

    Article  CAS  Google Scholar 

  19. Wu, G., Fang, Y.Z., Yang, S., Lupton, J.R., and Turner, N.D., J. Nutr., 2004, no. 134, p. 489.

  20. Conway, J.G., Neptun, D.A., Garvey, L.K., and Popp, J.A., Carcinogenesis, 1987, no. 8, p. 999.

  21. Townsend, D.M., Tew, K.D., and Tapiero, H., Biomed. Pharmacother., 2003, vol. 57, p. 145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Estrela, J.M., Ortega, A., and Obrador, E., Crit. Rev. Clin. Lab. Sci., 2006, vol. 43, no. 2, p. 143. https://doi.org/10.1080/10408360500523878

    Article  CAS  PubMed  Google Scholar 

  23. Toyokuni, S., Front. Pharmacol., 2014, vol. 5, no. 200, p. 1. https://doi.org/10.3389/fphar.2014.00200

    Article  CAS  Google Scholar 

  24. Stavrovskaya, A.A., Biochemistry (Moscow), 2000, vol. 1, no. 65, p. 95.

    Google Scholar 

  25. Guo, R., Yang, G., Feng, Z., Zhu, Y., Yang, P., Song, H., Wang, W., Huang, P., and Zhang, J., Biomater. Sci, vol. 6, no. 5, p. 1238. https://doi.org/10.1039/c8bm00094h

  26. Albrecht, S.C., Barata, A., Großhans, J., Teleman, A.A., and Dick, T.P., Cell Metab., 2011, no. 14, p. 819. https://doi.org/10.1016/j.cmet.2011.10.010

  27. Weschawalit, S., Thongthip, S., Phutrakool, P., and Asawanonda, P., Clin., Cosmet. Invest. Dermatol., 2017, no. 10, p. 147.

  28. Altıntaşa, A., Davidsena, K., Gardea, C., Mortensena, U.H., Brasen, J.C., Sams, T., and Workman, C.T., Free Radical Biol. Med., 2016, no. 101, p. 143.

  29. Marinho, H.S., Real, C., Cyrne, L., Soares, H., and Antunes, F., Redox Biol., 2014, no. 2, p. 535.

  30. Sies, H., Redox Biol., 2017, no. 11, p. 613.

  31. Winterbourn, C.C. and Hampton, M.B., Free Radical Biol. Med., 2008, vol. 5, no. 45, p. 549.

    Article  CAS  Google Scholar 

  32. Deutsch, J.C., Santhosh-Kumar, C.R., and Kolhouse, J.F., J. Chromatogr. A, 1999, no. 862, p. 161.

  33. Petzolda, H. and Sadler, P.J., Chem. Commun., 2008, p. 4413. https://doi.org/10.1039/b805358h

  34. Singh, B., Das, R.S., Banerjee, R., and Mukhopadhyay, S., Inorg. Chim. Acta., 2014, no. 418, p. 51.

  35. Chatgilialoglu, C. and Bowry, V.W., J. Org. Chem., 2018, vol. 83, no. 16, p. 9178. https://doi.org/10.1021/acs.joc.8b01216

    Article  CAS  PubMed  Google Scholar 

  36. Abedinzadeh, Z., Gardes-Albert, M., and Ferradini, C., Can. J. Chem., 1989, no. 67, p. 1247.

  37. Zinatullina, K.M., Kasaikina, O.T., Khrameeva, N.P., Shapiro, B.I., and Kuzmin, V.A., Russ. Chem. Bull., 2017, vol. 66, no. 7, p. 1300.

    Article  CAS  Google Scholar 

  38. Zinatullina, K.M., Kasaikina, O.T., Kuzmin, V.A., and Khrameeva, N.P., Russ. Chem. Bull., 2018, vol. 67, no. 4, p. 726. https://doi.org/10.1007/s11172-018-2129-0

    Article  CAS  Google Scholar 

  39. Zinatullina, K.M., Kasaikina, O.T., Khrameeva, N.P., Shapiro, B.I., and Kuzmin, V.A., Russ. Chem. Bull., 2017, vol. 66, no. 11, p. 2145. https://doi.org/10.1007/s11172-017-1995-1

    Article  CAS  Google Scholar 

  40. Zinatullina, K.M., Khrameeva, N.P., and Kasaikina, O.T., Bulg. Chem. Commun., 2018, vol. 50, special issue C, p. 25.

  41. Zinatullina, K.M., Kasaikina, O.T., Kuzmin, V.A., Khrameeva, N.P., and Shapiro, B.I., Russ. Chem. Bull., 2016, vol. 65, no. 12, p. 2825.

    Article  CAS  Google Scholar 

  42. Ellman, G.L., Arch. Biochem. Biophys., 1959, no. 82, p. 70.

  43. Sirick, A.V., Pliss, R.E., Rusakov, A.I., and Pliss, E.M., Oxid. Commun., 2014, vol. 37, no. 1, p. 37.

    CAS  Google Scholar 

  44. Nagy, P. and Ashby, M.T., J. Am. Chem. Soc., 2007, vol. 129, no. 45, p. 14 082.

    Article  CAS  Google Scholar 

  45. Hellwege, K.-H., Madelung, O., and Martienssen, W., Landolt-Bornstein, Heidelberg: Springer. 1983, no. 13, p. 308.

Download references

FUNDING

This work was supported by the Russian Foundation for Basic Research (grant nos. 18-33-00742 and 17-03-00364).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Zinatullina.

Additional information

Translated by Valentin Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinatullina, K.M., Kasaikina, O.T., Kuz’min, V.A. et al. Interaction of Glutathione with Hydrogen Peroxide: A Kinetic Model. Kinet Catal 60, 266–272 (2019). https://doi.org/10.1134/S0023158419030169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158419030169

Keywords:

Navigation