Skip to main content
Log in

Interaction between Glutathione and Resveratrol in the Presence of Hydrogen Peroxide: A Kinetic Model

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The kinetics of interaction between glutathione (GSH) and unsaturated phenol resveratrol (RVT) in deionized water in the presence of hydrogen peroxide (H2O2) is studied. At a physiological concentration (0.1–10 mM), GSH containing two carboxyl groups forms acidic solutions (pH of 3–4); the GSH molecules are associated into dimers. Under these conditions, GSH is quite slowly oxidized by atmospheric oxygen, and the reaction between GSH and H2O2 is accompanied by the formation of radicals. The thiyl radical initiation rate (Wi) is a few fractions of a percent of the GSH consumption rate; however, it is sufficient to initiate a thiol–ene chain reaction between GSH and RVT. Using the experimental data on the kinetics and the product composition and the published data on reactions of GSH with H2O2 and thiyl radicals, a kinetic model of the complex interaction between GSH and RVT in the presence of H2O2 in an aqueous medium at 37°C is proposed. The model includes 19 quasi-elementary reactions with respective rate constants, in particular, the formation of intermediate GSH–H2O2 and GSH–GSH complexes, the formation of radicals, and their subsequent transformations into final products in reactions with RVT and GSH. A computer simulation based on the developed model adequately describes the features of the process kinetics in a wide reactant concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Mironczuk-Chodakowska, I. and Witkowska, A.M., Adv. Med. Sci., 2018, vol. 63, no. 3, p. 68. https://doi.org/10.1016/j.advms.2017.05.005

    Article  PubMed  Google Scholar 

  2. Sporer, A.J., Kahl, L.J., Price-Whelan, A., and Dietrich, L.E.P., Annu. Rev. Biochem., 2017, vol. 86, p. 777. https://doi.org/10.1146/annurev-biochem-061516-044453

    Article  CAS  PubMed  Google Scholar 

  3. Hartl, J., Kiefer, P., Kaczmarczyk, A., Mittelviefhaus, M., Meyer, F., Vonderach, T., Hattendorf, B., Jenal, U., and Vorholt, J.A., Nat. Metab., 2020, vol. 2, p. 153. https://doi.org/10.1038/s42255-019-0166-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elgawish, M.S., Kishikawab, N., and Kurodab, N., Analyst, 2015, vol. 140, p. 8148. https://doi.org/10.1039/c5an01604e

    Article  PubMed  Google Scholar 

  5. Chen, Y., Han, M., Matsumoto, A., Wang, Y., Thompson, D.C., and Vasiliou, V., Adv. Exp. Med. Biol., 2018, vol. 1032, p. 37. https://doi.org/10.1007/978-3-319-98788-0_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burtis, A.C., Ashwood, E.R., Saunders, W.B., and Tietz, N.W., Fundamentals of Clinical Chemistry, Philadelphia, 1996, 4th ed.

    Google Scholar 

  7. Estrela, J.M., Ortega, A., and Obrador, E., Crit. Rev. Clin. Lab Sci., 2006, vol. 43, no. 2, p. 143. https://doi.org/10.1080/10408360500523878

    Article  CAS  PubMed  Google Scholar 

  8. Toyokuni, S., Front. Pharmacol., 2014, vol. 5, no. 200, p. 1. https://doi.org/10.3389/fphar.2014.00200

    Article  CAS  Google Scholar 

  9. Guo, R., Yang, G., Feng, Z., Zhu, Y., Yang, P., Song, H., Wang, W., Huang, P., and Zhang, J., Biomater. Sci., 2018, vol. 6, no. 5, p. 1238. https://doi.org/10.1039/c8bm00094h

    Article  CAS  PubMed  Google Scholar 

  10. Zinatullina, K.M., Kasaikina, O.T., Kuz’min, V.A., and Khrameeva, N.P., Kinet. Catal., 2019, vol. 60, no. 3, p. 266. https://doi.org/10.1134/S0023158419030169

    Article  CAS  Google Scholar 

  11. Zinatullina, K.M., Kasaikina, O.T. Kuzmin, V.A., Khrameeva, N.P., and Shapiro, B.I, Russ. Chem. Bull., 2017, vol. 66, no. 7, p. 1300. https://doi.org/10.1134/S0023158417050093

    Article  CAS  Google Scholar 

  12. Zinatullina, K.M., Khrameeva, N.P., Kasaikina, O.T., and Kuzmin, V.A., Russ. Chem. Bull., 2018, vol. 67, no. 4, p. 726. https://doi.org/10.1007/s11172-018-2129-0

    Article  CAS  Google Scholar 

  13. Zinatullina, K.M., Khrameeva, N.P., Kasaikina, O.T., Kuzmin, V.A., and Shapiro, B.I., Russ. Chem. Bull., 2017, vol. 66, no. 11, p. 2145.] https://doi.org/10.1007/s11172-017-1995-1

  14. Zinatullina, K.M., Khrameeva, N.P., and Kasaikina, O.T., Bulg. Chem. Commun., 2018, vol. 50, p.25.

    Google Scholar 

  15. Zinatullina, K.M., Kasaikina, O.T., Kuzmin, V.A., Khrameeva, N.P., and Shapiro, B.I., Russ. Chem. Bull., 2016, vol. 65, no. 12, p. 2825. https://doi.org/10.1007/s11172-016-1663-x

    Article  CAS  Google Scholar 

  16. Zinatullina, K.M., Kasaikina, O.T., Motyakin, M.V., Ionova, I.S., Degtyarev, E.N., and Khrameeva, N.P., Russ. Chem. Bull., 2020, vol. 69, no. 10, p. 1865. https://doi.org/10.1007/s11172-020-2971-8

    Article  CAS  Google Scholar 

  17. Posner, T., Ber. Dtsch. Chem. Ges., 1905, vol. 38, no. 1, p. 646. https://doi.org/10.1002/cber.190503801106

    Article  Google Scholar 

  18. Nilsson, C., Simpson, N., Malkoch, M., Johansson, M., and Malmström, E., J. Polym. Sci. A: Polym. Chem., 2008, vol. 46, no. 4, p. 1339. https://doi.org/10.1002/pola.22474

    Article  CAS  Google Scholar 

  19. Liu, Y., Hou, W., Sun, H., Cui, C., Zhang, L., Jiang, Y., Wu, Y., Wang, Y., Li, J., Sumerlin, B.S., Liu, Q., and Tan, W., Chem. Sci., 2017, vol. 8, p. 6182. https://doi.org/10.1039/c7sc01447c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Biermann, U. and Metzger, J.O., Eur. J. Org. Chem., 2018, no. 6, p. 730. https://doi.org/10.1002/ejoc.201701692

  21. Salehi, B., Mishra, A.P., Nigam, M., Sener, B., Kilic, M., Sharifi-Rad, M., Fokou, P.V.T., Martins, N., and Sharifi-Rad, J., Biomedicines, 2018, vol. 6, no. 3, p. 91. https://doi.org/10.3390/biomedicines6030091

  22. Yu, W., Fu, Y.C., and Wang, W., J. Cell. Biochem., 2012, vol. 113, no. 3, p. 752. https://doi.org/10.1002/jcb.23431

    Article  CAS  PubMed  Google Scholar 

  23. Chatgilialoglu, C. and Ferreri, C., Acc. Chem. Res., 2005, vol. 38, no. 6, p. 441. https://doi.org/10.1021/ar0400847

    Article  CAS  PubMed  Google Scholar 

  24. Samadi, A., Andreu, I., Ferreri, C., Dellonte, S., and Chatgilialoglu, C., J. Am. Oil Chem. Soc., 2004, vol. 81, no. 8, p. 753. https://doi.org/10.1007/s11746-004-0974-8

    Article  CAS  Google Scholar 

  25. Ellman, G.L., Arch. Biochem. Biophys., 1959, vol. 82, p. 70.

    Article  CAS  Google Scholar 

  26. Pereira, C.D., Minamino, N., and Takao, T., Anal. Chem., 2015, vol. 87, p. 10785. https://doi.org/10.1021/acs.analchem.5b03431

    Article  CAS  PubMed  Google Scholar 

  27. Zinatullina, K.M., Kasaikina, O.T., Kuz’min, V.A., Khrameeva, N.P., and Pisarenko, L.M., Russ. Chem. Bull., 2019, vol. 68, p. 1441. https://doi.org/10.1007/s11172-019-2574-4

    Article  CAS  Google Scholar 

  28. Sirick, A.V., Pliss, R.E., Rusakov, A.I., and Pliss, E.M., Oxid. Commun., 2014, vol. 37, no. 1, p. 37.

    CAS  Google Scholar 

  29. Denisov, E.T. and Denisova, T.G., Handbook of Antioxidants: Bond Dissociation Energies, Rate Constants, Activation Energies and Enthalpies of Reactions, Boca Raton: CRC, 2000, p. 289.

    Google Scholar 

  30. Deutsch, J.C., Santhosh-Kumar, C.R., and Kolhouse, J.F., J. Chromatogr. A, 1999, no. 862, p. 161. https://doi.org/10.1016/S0021-9673(99)00932-2

  31. Winterbourn, C.C. and Metodiewa, D., Free Radicals Biol. Med., 1999, vol. 27, p. 322. https://doi.org/10.1016/S0891-5849(99)00051-9

    Article  CAS  Google Scholar 

  32. Petzolda, H. and Sadler, P.J., Chem. Commun., 2008, p. 4413. https://doi.org/10.1039/b805358h

  33. Singh, B., Das, R.S., Banerjee, R., and Mukhopadhyay, S., Inorg. Chim. Acta, 2014, no. 418, p. 51. https://doi.org/10.1016/j.ica.2014.03.003

  34. Chatgilialoglu, C. and Bowry, V.W., J. Org. Chem., 2018, vol. 83, no. 16, p. 9178. https://doi.org/10.1021/acs.joc.8b01216

    Article  CAS  PubMed  Google Scholar 

  35. Abedinzadeh, Z., Gardes-Albert, M., and Ferradini, C., Can. J. Chem., 1989, vol. 67, p. 1247. https://doi.org/10.1139/v89-190

    Article  CAS  Google Scholar 

  36. Berges, J., Caillet, J., Langlet, J., and Abedinzadeh, Z., Theor. Claim. Acta, 1993, vol. 85, p. 87 99. https://doi.org/10.1007/BF01374579

  37. Picquart, M., Grajcar, L., Baron, M.H., and Abedinzadeh, Z., Biospectroscopy, 1999, vol. 5, p. 328. https://doi.org/10.1002/(SICI)1520-6343(1999)5:6<328::AID-BSPY2>3.0.CO;2-J

  38. Abedinzadeh, Z., Can. J. Physiol. Pharmacol., 2001, vol. 79, p. 166. https://doi.org/10.1139/cjpp-79-1-166

    Article  CAS  PubMed  Google Scholar 

  39. Hellwege, K.-H., Madelung, O., and Martienssen, W., Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Berlin: Springer, 1983, vol. 13, 308 p.

    Google Scholar 

  40. Chatgilialoglu, C. and Studer, A., Encyclopedia of Radicals in Chemistry, Biology and Materials, New York: Wiley, 2012. https://doi.org/10.1002/9781119953678

    Book  Google Scholar 

  41. Ito, O. and Matsudo, M., J. Am. Chem. Soc., 1979, vol. 101, no. 7, p. 1815. https://doi.org/10.1021/ja00501a031

    Article  CAS  Google Scholar 

  42. Ito, O. and Matsudo, M., J. Am. Chem. Soc., 1979, vol. 101, no. 19, p. 5732. https://doi.org/10.1021/ja00513a045

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-03-00753) and performed under a state task (project no. 0082-2018-0006, registration no. АААА-А18-118020890097-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. M. Zinatullina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Abbreviations: GSH, glutathione; RVT, resveratrol; Wi, thiyl radical initiation rate; DTNB, 5,5'-dithiobis(2-nitrobenzoic acid); PBS, phosphate buffered saline; WRVT, RVT consumption rate; WGSH, GSH consumption rate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinatullina, K.M., Kasaikina, O.T., Khrameeva, N.P. et al. Interaction between Glutathione and Resveratrol in the Presence of Hydrogen Peroxide: A Kinetic Model. Kinet Catal 62, 255–263 (2021). https://doi.org/10.1134/S0023158421020130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158421020130

Keywords:

Navigation