Skip to main content
Log in

Crystal structures of two enantiomorphous 2-ethylpiperazinediium hexaaquacopper sulfates [(R or S)-C5H14N2][Cu(H2O)6](SO4)2

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Two new non-centrosymmetric copper sulfates are synthesized under slow evaporation conditions through the use of enantiomorphically pure sources of either (R)-2-methylpiperazine or (S)-2-methylpiperazine. Both crystallize in the non-centrosymmetric P21 space group, crystal data for [(R)-C5H14N2][Cu(H2O)6](SO4)2 (I), a = 6.5276(2) Å, b = 11.1955(3) Å, c = 12.4559(4) Å, β = 101.196(2)°, Z = 2, V = 892.95(5) Å3 and [(S)-C5H14N2][Cu(H2O)6](SO4)2 (II), a = 6.5188(2) Å, b = 11.1786(2) Å, c = 12.4365(3) Å, β = 101.205(1)°, Z = 2, V = 888.99(4) Å3. The three-dimensional structure networks for these compounds consist of isolated [Cu(H2O)6]2+ and [(R)-C5H14N2]2+ or [(S)-C5H14N2]2+ cations and SO 2−4 anions linked only by hydrogen bonds. The Cu atom is in a slightly distorted octahedral coordination environment. The crystal packings are influenced by cation-to-anion N-H…O and OW-H…O hydrogen bonds leading to an open framework structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Yaghi, H. Li, C. Davis, et al., Groy. Acc. Chem. Res., 31, 474 (1998).

    Article  CAS  Google Scholar 

  2. M. Ishaque Khan, E. Yohannes, V. O. Golub, C. J. O’Connor, and R. J. Doedens, Chem. Mater., 19, 4890 (2007).

    Article  CAS  Google Scholar 

  3. P. G. Lacroix, R. Clement, K. Nakatani, J. A. Delaire, J. Zyss, and I. Ledoux, Science, 263, 658 (1994).

    Article  CAS  Google Scholar 

  4. M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, and O. M. Yaghi, Acc. Chem. Res., 34, 319 (2001).

    Article  CAS  Google Scholar 

  5. S. M. Kuznicki, V. A. Bell, S. Nair, H. W. Hillhouse, R. M. Jacubinas, C. M. Braunbarth, B. H. Toby, and M. Tsapatsis, Nature, 412, 720 (2001).

    Article  CAS  Google Scholar 

  6. S. Christian, P. Fabienne, G. Nicole, and G. Ferey, Chem. Mater., 16, 1177 (2004).

    Article  Google Scholar 

  7. M. E. Davis, J. Chem. Eur., 3, 1745 (1997).

    Article  CAS  Google Scholar 

  8. R. C. Haushalter and L. A. Mundi, Chem. Mater., 4, 31 (1992).

    Article  CAS  Google Scholar 

  9. A. K. Cheetham, G. Ferey, and T. Loiseau, Angew. Chem., Int. Ed. Eng., 38, 3268 (1999).

    Article  CAS  Google Scholar 

  10. K. H. Lii, Y. F. Huang, V. Zima, C. Y. Huang, H. M. Lin, Y. C. Jiang, F. L. Liao, and S. L. Wang, Chem. Mater., 10, 2599 (1998).

    Article  CAS  Google Scholar 

  11. Y. J. Zhao, X. H. Li, and S. Wang, Acta Crystallogr., E61, m671 (2005).

    CAS  Google Scholar 

  12. I. Turel, I. Leban, M. Zupancic, P. Bukovec, and K. Gruber, Acta Crystallogr., C52, 2443 (1996).

    CAS  Google Scholar 

  13. M. Rademeyer, Acta Crystallogr., E60, m993 (2004).

    CAS  Google Scholar 

  14. W. Rekik, H. Naïli, T. Mhiri, and T. Bataille, Acta Crystallogr., E61, m629 (2005).

    CAS  Google Scholar 

  15. F. Hajlaoui, S. Yahyaoui, H. Naïli, T. Mhiri, and T. Bataille, Polyhedron, 28, 2113 (2009).

    Article  CAS  Google Scholar 

  16. S. Yahyaoui, W. Rekik, H. Naïli, T. Mhiri, and T. Bataille, J. Solid State Chem., 180, 3560 (2007).

    Article  CAS  Google Scholar 

  17. W. Rekik, H. Naïli, T. Bataille, and T. Mhiri, J. Organomet. Chem., 691, 4725 (2006).

    Article  CAS  Google Scholar 

  18. E. A. Muller, R. J. Cannon, A. N. Sarjeant, K. M. Ok, P. S. Halasyamani, and A. J. Norquist, Cryst. Growth and Design, 5, 1913 (2005).

    Article  CAS  Google Scholar 

  19. F. Hajlaoui, S. Yahyaoui, H. Naïli, T. Mhiri, and T. Bataille, Inorg. Chim. Acta, 363, 691 (2010).

    Article  CAS  Google Scholar 

  20. Nonius, Kappa CCD Program Software, Nonius BV, Delft, The Netherlands (1998).

  21. Z. Otwinowski, W. Minor, C. W. Carter, and R. M. Sweet, Eds. Methods in Enzymology, 276, Academic Press, New York (1997), p. 307.

    Google Scholar 

  22. J. De Meulenaer and H. Tompa, Acta Crystallogr., 19, 1014 (1965).

    Article  Google Scholar 

  23. L. J. Farrugia, J. Appl. Crystallogr., 32, 837 (1999).

    Article  CAS  Google Scholar 

  24. G. M. Sheldrick, Acta Crystallogr., A64, 112–122 (2008).

    CAS  Google Scholar 

  25. K. Brandenburg, Diamond Version 2.0 Impact GbR, Bonn, Germany (1998).

  26. A. L. Spek, PLATON, a Multipurpose Crystallographic Tool, Utrecht Univ., The Netherlands (2001).

    Google Scholar 

  27. W. Rekik, H. Naïli, T. Mhiri, and T. Bataille, Mater. Res. Bull., 43, 2709 (2008).

    Article  CAS  Google Scholar 

  28. X. Sun, F. Zhang, Y. Xu, and X. Zheng, J. Clust. Sci., 19, 481 (2008).

    Article  CAS  Google Scholar 

  29. Y. Fu, Y. Zhang, and Z. Xu, J. Mol. Struct., 30, 891 (2008).

    Google Scholar 

  30. J. N. Behera and C. N. R. Rao, Inorg. Chem., 45, 9475 (2006).

    Article  CAS  Google Scholar 

  31. D. Hagrman, R. C. Haushalter, and J. Zubieta, Chem. Mater., 10, 361 (1998).

    Article  CAS  Google Scholar 

  32. J. M. Xiaoa and W. Zhang, Inorg. Chem. Comm., 12, 1175 (2009).

    Article  Google Scholar 

  33. W. Rekik, H. Naïli, T. Mhiri, and T. Bataille, Solid State Sci., 11, 614 (2009).

    Article  CAS  Google Scholar 

  34. G. Paul, A. Choudhury, R. Nagarajan, and C. N. R. Rao, Inorg. Chem., 42, 2004 (2003).

    Article  CAS  Google Scholar 

  35. I. D. Brown, J. Appl. Crystallogr., 29, 479 (1996).

    Article  CAS  Google Scholar 

  36. H. Naïli, W. Rekik, T. Bataille, and T. Mhiri, Polyhedron, 25, 3543 (2006).

    Article  Google Scholar 

  37. W. Rekik, H. Naïli, T. Bataille, T. Roisnel, and T. Mhiri, Inorg. Chim. Acta, 359, 3954 (2006).

    Article  CAS  Google Scholar 

  38. W. Rekik, H. Naïli, T. Bataille, and T. Mhiri, J. Chem.Crystallogr., 37, 147 (2006).

    Article  Google Scholar 

  39. M. Fleck, L. Bohaty, and E. Tillmanns, Solid State Sci., 6, 469 (2004).

    Article  CAS  Google Scholar 

  40. J. M. Whitnall and C. H. L. Kennard, J. Solid State Chem., 22, 379 (1977).

    Article  CAS  Google Scholar 

  41. M. Fleck and U. Kolitsch, Z. Kristallogr., 217, 471 (2002).

    CAS  Google Scholar 

  42. H. Euler, B. Barbier, S. Klumpp, and A. Kirfel, Z. Kristallogr., 215, 473 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Naïli.

Additional information

Original Russian Text Copyright © 2012 by F. Hajlaoui, H. Naïli, S. Yahyaoui, T. Mhiri, T. Bataille

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 2, pp. 335–341, March–April, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajlaoui, F., Naïli, H., Yahyaoui, S. et al. Crystal structures of two enantiomorphous 2-ethylpiperazinediium hexaaquacopper sulfates [(R or S)-C5H14N2][Cu(H2O)6](SO4)2 . J Struct Chem 53, 334–340 (2012). https://doi.org/10.1134/S0022476612020187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612020187

Keywords

Navigation