Skip to main content
Log in

Characterization of New Pentanuclear Copper(II) and REE(III) Carboxylate Complexes

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

New pentanuclear complexes [Cu3M2(CHF2COO)12(H2O)8]·2H2O, where M = Er (I) and Nd (II), were synthesized by reacting individual copper haloacetates and REE in aqueous solution. The molecular structure of complex I was determined by single crystal X-ray diffraction analysis (CIF file CCDC no. 2159724). The structural features of the complexes and the nature of the carboxylate bridges between the metal centers affect the properties of these complexes; therefore, two similar compounds with the monochloroacetate ligand were prepared for comparison: [Cu3M2(СH2ClCOO)12(H2O)8]·2H2O, where M = Er (III) and Nd (IV). Compounds III and IV are isostructural to previously studied complexes of this type with other REE. Compounds IIV were characterized by X-ray diffraction analysis and IR spectroscopy, and their thermal behavior was studied. To confirm the formation of precursors of molecular species of crystalline compound I, the solute species of the complexes were determined by electrospray ionization mass spectrometry (ESI-MS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Xu. Can, S. Chen, and L. Jia, Russ. J. Inorg. Chem. 67, 22 (2022). https://doi.org/10.1134/S0036023622601519

    Article  Google Scholar 

  2. Q. Ba, J. Qian, and C. Zhang, J. Clust. Sci. 30, 747 (2019). https://doi.org/10.1007/s10876-019-01534-7

    Article  CAS  Google Scholar 

  3. L. Zhong, M. Liu, and B. Zhang, et al., Chem. Res. Chin. Univ. 35, 693 (2019). https://doi.org/10.1007/s40242-019-9058-9

    Article  CAS  Google Scholar 

  4. A. Vasil’ev, O. Volkova, E. Zvereva, and M. Markina, Low Dimensional Magnetism (FIZMATLIT, Moscow, 2018) [in Russian].

    Google Scholar 

  5. J. B. Goodenough, Magnetism and the Chemical Bond (John Wiley & Sons, New Jersey, 1963).

    Google Scholar 

  6. F. Chen, W. Lu, Y. Zhu, B. Wu, X. Zheng, J. Coord. Chem. 63, 3599 (2010). https://doi.org/10.1080/00958972.2010.514904

    Article  CAS  Google Scholar 

  7. N. Muhammad and M. Ikram, et al., J. Mol. Struct. 1196, 754 (2019). https://doi.org/10.1016/j.molstruc.2019.06.095

    Article  CAS  Google Scholar 

  8. A. A. Bovkunova, E. S. Bazhina, I. S. Evstifeev, et al., Dalton Trans. 50, 12275 (2021). https://doi.org/10.1039/d1dt01161h

    Article  CAS  PubMed  Google Scholar 

  9. X.-M. Chen, M.-L. Tong, Y.-L. Wu, and Y.-J. Luo, J. Chem. Soc., Dalton Trans. 10, 2181 (1996). https://doi.org/10.1039/DT9960002181

    Article  Google Scholar 

  10. V. K. Voronkova, R. T. Galeev, S. Shova, et al., Appl. Magn. Reson. 25, 227 (2003). https://doi.org/10.1007/BF03166687

    Article  CAS  Google Scholar 

  11. Y. Cui, F. K. Zheng, D. C. Yan, et al., Chin. J. Struct. Chem. 17, 5 (1998).

    CAS  Google Scholar 

  12. C.-G. Zhang, D. Yan, Y. Ma, and F. Yang, J. Coord. Chem. 51, 261 (2000). https://doi.org/10.1080/00958970008055132

    Article  CAS  Google Scholar 

  13. W. Wojciechowski, J. Legendziewicz, M. Puchalska, and Z. Ciunik, J. Alloys Compd. 380, 285 (2004). https://doi.org/10.1016/j.jallcom.2004.03.056

    Article  CAS  Google Scholar 

  14. W. G. Bateman and D. B. Conrad, J. Am. Chem. Soc. 37, 2553 (1915).

    Article  CAS  Google Scholar 

  15. M. D. Judd, B. A. Plunkett, and M. Pope, J. Therm. Anal. 9, 83 (1976). https://doi.org/10.1007/BF01909269

    Article  CAS  Google Scholar 

  16. E. V. Karpova, A. I. Boltalin, Yu. M. Korenev, and S. I. Troyanov, Russ. J. Coord. Chem. 26, 361 (2000).

    CAS  Google Scholar 

  17. G. M. Sheldrick, Acta Crystallogr. A64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  PubMed  Google Scholar 

  18. G. M. Sheldrick, Acta Crystallogr. A71, 3 (2015). https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  19. G. M. Sheldrick, Acta Crystallogr. C71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  20. K. Brandenburg and M. Berndt, DIAMOND. Version 2.1e. Crystal Impact GbR. Bonn, 2000.

    Google Scholar 

  21. J. N. Niekerk and F. R. L. Schoening, Acta Crystallogr. 6, 227 (1953). https://doi.org/10.1107/S0365110X53000715

    Article  Google Scholar 

  22. S. Jangbo, N. Rongzhi, S. Xin, and P. Bo, SPIE Conf. Proc. 10256, 1046357 (2017). https://doi.org/10.1117/12.2260699

  23. V. Ya. Kavun, T. A. Kaidalova, V. I. Kostin, et al., Koord. Khim. 10, 1502 (1984).

    CAS  Google Scholar 

  24. A. S. Antsyshkina, M. A. Porai-Koshits, and V. N. Ostrikova, Zh. Neorg. Khim. 33, 1950 (1988).

    CAS  Google Scholar 

  25. Y. Sugita and A. Ouchi, Bull. Chem. Soc. Jpn. 60, 171 (1987). https://doi.org/10.1246/bcsj.60.171

    Article  CAS  Google Scholar 

  26. G. Oczko and P. Starynowicz, J. Mol. Struct. 523, 79 (2000). https://doi.org/10.1016/S0022-2860(99)00391-9

    Article  CAS  Google Scholar 

  27. B. Cristovao, D. Osypiuk, B. Miroslaw, and A. Bartyzel, Polyhedron 188, 114703 (2020). https://doi.org/10.1016/j.poly.2020.114703

    Article  CAS  Google Scholar 

  28. J.-P. Costes, M. Auchel, F. Dahan, et al., Inorg. Chem. 45, 1924 (2006). https://doi.org/10.1021/ic050587o

    Article  CAS  PubMed  Google Scholar 

  29. A. N. Georgopoulou, M. Pissas, V. Psycharis, et al., Molecules 25, 2280 (2020). https://doi.org/10.3390/molecules25102280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. C. G. Herbert and R. A. W. Johnstone, Mass Spectro-metry Basics (CRC Press, New York, 2003). https://doi.org/10.1002/aoc.509

    Book  Google Scholar 

  31. O. Schramel, B. Michalke, and A. Kettrup, J. Chromatogr., A 819, 231 (1998). https://doi.org/10.1016/S0021-9673(98)00259-3

  32. W. Henderson and J. S. McIndoe, Mass Spectrometry of Inorganic, Coordination, and Organometallic Compounds (John Wiley & Sons Ltd., New Jersey, 2005). https://doi.org/10.1002/0470014318

    Book  Google Scholar 

  33. G. B. Deacon and R. J. Phillips, Coord. Chem. Rev. 33, 227 (1980). https://doi.org/10.1016/S0010-8545(00)80455-5

    Article  CAS  Google Scholar 

  34. The Matheson Company Inc., John Wiley & Sons, New Jersey, 1980.

  35. O. S. Pushikhina, K. R. Volkova, E. V. Karpova, et al., Mendeleev Commun. 32, 208 (2022). https://doi.org/10.1016/j.mencom.2022.03.018

    Article  CAS  Google Scholar 

  36. M. D. Judd, B. A. Plunkett, and M. I. Pope, J. Therm. Anal. 6, 555 (1974). https://doi.org/10.1007/BF01911560

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to T.V. Filippova and R.A. Khalaniya for carrying out the X-ray powder diffraction studies, and to I.V. Kolesnik for recording the IR spectra. The work used equipment purchased at the expense of the Development Program of Moscow State University.

Funding

This work was supported by the Russian Science Foundation project No. 22-43-02020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. S. Pushikhina or E. V. Karpova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Supplementary Information

File 11502_2023_3120_MOESM1_ESM.pdf contains the following supplementary materials:

Photographic materials for compound I prepared by various methods (Fig. S1. Photographs of (a) single-phase crystals of compound I prepared as described in this paper and (b) a multiphase sample after long-term crystallization of solution with the metal molar ratio Cu : Er = 1 : 2);

The results of full-profile analysis (Fig. S2. Profile analysis of the X-ray diffraction pattern for a compound II sample.; Fig. S3. Profile analysis of the X-ray powder diffraction pattern for a compound I sample.);

Analysis of X-ray diffraction patterns of the decomposition products of compounds I and III (Fig. S4. Comparison of the X-ray diffraction patterns measured for solid residues of compound I after it was decomposed in a platinum crucible (the red line) and an alundum crucible (the blue line) at 270°С and in a platinum crucible at 240°С (the green line) with the PDF cards [S1] of erbium fluoride, copper oxide, and copper metal; Fig. S5. Comparison of the X-ray diffraction patterns measured for solid residues of compound III after it was decomposed in an alundum crucible at 400°С with the PDF cards [S2] of erbium chloride hexahydrate, erbium oxochloride, copper(I) chloride, copper(II) oxide, and copper metal.); and

Detailed TG data for all compounds (Fig. S6. TG results for a sample of compound I; Fig. S7. TG results for a sample of compound II; Fig. S8. TG results for a sample of compound III; and Fig. S9. TG results for a sample of compound IV).

11502_2023_3120_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pushikhina, O.S., Karpova, E.V., Tsarev, D.A. et al. Characterization of New Pentanuclear Copper(II) and REE(III) Carboxylate Complexes. Russ. J. Inorg. Chem. 68, 1313–1324 (2023). https://doi.org/10.1134/S0036023623601678

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601678

Keywords:

Navigation