Skip to main content
Log in

Molecular and crystal structure, spectroscopic properties of 2-methyl-4-(3-methyl-3-phenyl-cyclobutyl)-thiazole determined by the experimental method and a quantum chemical calculation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The structure of the synthesized title compound is characterized by IR, UV-visible spectroscopy, and single crystal X-ray diffraction (XRD). The new compound (C18H23NS) crystalizes in the monoclinic P21/c space group. In addition to the crystal structure from the X-ray experiment, the molecular geometry, vibrational frequencies, atomic charge distribution, and frontier molecular orbital (FMO) analysis of the title compound in the ground state are calculated by density functional teory (B3LYP) with 6-311G(d,p) and 6-31G(d,p) basis sets. The results of the optimized molecular structure are presented and compared with the experimental values. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the observed experimental bands. To determine the conformational flexibility, the molecular energy profile of (1) is obtained by semi-empirical (AM1) and (PM3) calculations with respect to a selected degree of torsional freedom. Moreover, molecular electrostatic potential (MEP) and thermodynamic parameters of the title compound were calculated by the theoretical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Zollinger, Colour Chemistry Syntheses Properties and Applications of Organic Dyes and Pigments, 2nd ed., VCH, Weinheim (1991).

    Google Scholar 

  2. M. Koparır, A. Cansız, M. Ahmedzade, et al., Heteroat. Chem., 15, 26–31 (2004).

    Article  Google Scholar 

  3. M. Ahmedzade, A. Çukurovali, and M. Koparır, J. Chem. Soc. Pak., 25, 51–53 (2003).

    CAS  Google Scholar 

  4. L. Coghi, A. M. M. Lanfredi, and A. Tripicchio, J. Chem. Soc. Perkin. Trans., 2, 1808–1810 (1976).

    Google Scholar 

  5. M. Dinçer, D. Avcı, M. Şekerci, et al., J. Mol. Model., 14, 823–832 (2008).

    Article  Google Scholar 

  6. N. Özdemir, M. Dinçer, A. Çukurovalı, et al., J. Mol. Model., 15, 1435–1445 (2009).

    Article  Google Scholar 

  7. N. Misra, O. Prasad, L. Sinha, et al., J. Mol. Struct. (Theochem.), 822, 45–47 (2007).

    Article  CAS  Google Scholar 

  8. F. Jian, P. Zhao, H. Guo, et al., Spectrochim. Acta, A69, 647–653 (2008).

    Google Scholar 

  9. J. Choo, S. Yoo, S. Moon, et al., Vibr. Spect., 17, 173–182 (1998).

    Article  CAS  Google Scholar 

  10. G. M. Sheldrick, SHELXS-97 and SHELXL-97, Univ. Göttingen, Germany (1997).

    Google Scholar 

  11. C. Lee, W. Yang, and R. G. Parr, Phys. Rev., B37, 785–789 (1988).

    Google Scholar 

  12. A. D. Becke, J. Chem. Phys., 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  13. R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys., 54, 724–728 (1971).

    Article  CAS  Google Scholar 

  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Revision E.01, Gaussian Inc., Wallingford, CT (2004).

    Google Scholar 

  15. R. I. I. Dennington, T. Keith, and J. Millam, GaussView, Version 4.1.2. Semichem Inc, Shawnee Mission, KS (2007).

    Google Scholar 

  16. L. J. Farrugia, J. Appl. Crystallogr., 30, 565/566 (1997).

    Article  Google Scholar 

  17. F. H. Allen, Acta Crystallogr., B40, 64–72 (1984).

    CAS  Google Scholar 

  18. Ç. Yüksektepe, N. Çalışkan, I. Yılmaz, et al., Acta Crystallogr., E62, o2762–o2764 (2006).

    Google Scholar 

  19. Ç. Yüksektepe, H. Saraçoğlu, M. Koca, et al., Acta Crystallogr., C60, o509/o510 (2004).

    Google Scholar 

  20. Ç. Yüksektepe, M. S. Soylu, H. Saraçoğlu, et al., Acta Crystallogr., E61, o1158–o1160 (2005).

    Google Scholar 

  21. H. Arslan and O. Algül, Int. J. Mol. Sci., 8, 760–779 (2007).

    Article  CAS  Google Scholar 

  22. S. A. Siddiqui, A. Dwivedi, P. K. Singh, et al., J. Struct. Chem., 50, 411–420 (2009).

    Article  CAS  Google Scholar 

  23. N. Sundaraganesan, K. S. Kumar, C. Meganathan, et al., Spectrochim. Acta, A65, 1186–1196 (2006).

    Google Scholar 

  24. V. Krishnakumar and R. Ramasamy, Spectrochim. Acta, A62, 570 (2005).

    Google Scholar 

  25. Z. Weiqun, L. Baolong, C. Yang Yang, et al., J. Mol. Struct. (Theochem.), 715, 117–124 (2005).

    Article  Google Scholar 

  26. E. Scrocco and J. Tomasi, Adv. Quant. Chem., 11, 115–121 (1979).

    Article  Google Scholar 

  27. F. J. Luque, J. M. Lopez, and M. Orozco, Theor. Chem. Acc., 103, 343–345 (2000).

    Article  CAS  Google Scholar 

  28. N. Okulik and A. H. Jubert, Internet Electron. J. Mol. Des., 4, 17 (2005).

    CAS  Google Scholar 

  29. P. Politzer, P. R. Laurence, and K. Jayasuriya, in: Structure Activity Correlation in Mechanism Studies and Predictive Toxicology, J. McKinney (ed.), Special Issue of Environ, Health Perspect, 61, 191 (1985).

  30. E. Scrocco and J. Tomasi, Topics in Current Chemistry, Vol. 7, 95, Springer, Berlin (1973).

    Google Scholar 

  31. P. Politzer and D. G. Truhlar, Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum, New York (1981).

    Google Scholar 

  32. R. Kurtaran, S. Odabasoĝlu, A. Azizoĝlu, et al., Polyhedron, 26, 5069–5074 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ç. Yüksektepe.

Additional information

Original Russian Text Copyright © 2012 by Ç. Yüksektepe, N. Çalışkan, I. Yılmaz, and A. Çukurovalı

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 53, No. 1, pp. 68–77, January–February, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yüksektepe, Ç., Çalışkan, N., Yılmaz, I. et al. Molecular and crystal structure, spectroscopic properties of 2-methyl-4-(3-methyl-3-phenyl-cyclobutyl)-thiazole determined by the experimental method and a quantum chemical calculation. J Struct Chem 53, 63–72 (2012). https://doi.org/10.1134/S0022476612010088

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476612010088

Keywords

Navigation