Skip to main content
Log in

Molecular structure and vibrational and chemical shift assignments of 5-(2-Hydroxyphenyl)-4-(p-tolyl)-2,4-dihydro-1,2,4-triazole-3-thione by DFT and ab initio HF calculations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The molecular geometry, vibrational frequencies, gauge including atomic orbital (GIAO) 1H and 13C chemical shift values and several thermodynamic parameters of 5-(2-Hydroxyphenyl)-4-(p-tolyl)-2,4-dihydro-1,2,4-triazole-3-thione in the ground state have been calculated by using the Hartree-Fock (HF) and density functional method (DFT/B3LYP) with 6–31G(d), 6–31 + G(d,p) and LANL2DZ basis sets. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The computed vibrational frequencies are used to determine the types of molecular motions associated with each of the experimental bands observed. Also, calculated 1H chemical shift values compared with the experimental ones. The data of the title compound display significant molecular structure and IR, NMR analysis provide the basis for future design of efficient materials having the of 1,2,4-triazole core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jones DH, Slack R, Squires S, Wooldridge KRH (1965) J Med Chem 8:676–680

    Article  CAS  Google Scholar 

  2. Mullican MD, Wilson MW, Connor DT, Kostlan CR, Schrier DJ, Dyer RD (1993) J Med Chem 36:1090–1099

    Article  CAS  Google Scholar 

  3. Porsolt RD, Bertin A, Jalfre M (1977) Arch Int Pharmacol 229:327–336

    CAS  Google Scholar 

  4. Shams El-Dine SA, Hazzaa AAB (1974) Pharmazie 29:761–768

    CAS  Google Scholar 

  5. Sughen JK, Yoloye T (1978) Pharm Acta Helv 58:64–68

    Google Scholar 

  6. Unangst PC, Shurum GP, Connor DT, Dyer RD, Schrier DJ (1992) J Med Chem 35:3691–3698

    Article  CAS  Google Scholar 

  7. Genç S, Dege N, Çetin A, Cansız A, Şekerci M, Dinçer M (2004) Acta Cryst E60:o1339–o1341

    Google Scholar 

  8. Zamani K, Faghihi K, Sangi MR, Zolgharneın J (2003) Turk J Chem 27:119–125

    CAS  Google Scholar 

  9. Cansız A, Koparır M, Demirdağ A (2004) Molecules 9:204–212

    Article  Google Scholar 

  10. Aydogan F, Turgut Z, Olcay N, Erdem SS (2002) Turk J Chem 26:159–169

    CAS  Google Scholar 

  11. Charıstos DD, Vagenes GV, Tzavellas LC, Tsoleridis CA, Rodios NA (1994) J Heterocycl Chem 31:1593–1598

    Article  Google Scholar 

  12. Genç S, Dege N, Yılmaz I, Cukurovalı A, Dinçer M (2004) Acta Cryst E60:o889–o891

    Google Scholar 

  13. Wujec M, Paneth P (2007) J Phys Org Chem 20:1043–1049

    Article  CAS  Google Scholar 

  14. Casanovas J, Namba AM, Leon S, Aquino GLB, da Silva GVJ, Aleman C (2001) J Org Chem 66:3775–3782

    Article  CAS  Google Scholar 

  15. Sebag AB, Forsyth DA, Plante MA (2001) J Org Chem 66:7967–7973

    Article  CAS  Google Scholar 

  16. Chesnut DB in Reviews in Computational Chemistry, vol. 8 (Eds: K. B. Lipkowitz, D. B. Boyd) VCH New York, 1996; ch. 5: p. 245

  17. de Dios AC (1996) Prog Nucl Magn Reson Spectrosc 29:229–278

    Article  Google Scholar 

  18. Forsyth DA, Sebag AB (1997) J Am Chem Soc 119:9483–9494

    Article  CAS  Google Scholar 

  19. Helgaker T, Jaszunski M, Ruud K (1999) Chem Rev 99:293–352

    Article  CAS  Google Scholar 

  20. Ditchfield R (1972) J Chem Phys 56(11):5688–5691

    Article  CAS  Google Scholar 

  21. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112(23):8251–8260

    Article  CAS  Google Scholar 

  22. Cheeseman JR, Trucks GW, Keith TA, Frisch MJ (1996) J Chem Phys 104(14):5497–5509

    Article  CAS  Google Scholar 

  23. Cimino P, Gomez-Paloma L, Duca D, Riccio R, Bifulco G (2004) Magn Reson Chem 42:26–33

    Article  CAS  Google Scholar 

  24. Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz BD, Cao Y (1999) J Phys Chem A 103(13):1913–1928

    Article  CAS  Google Scholar 

  25. Rulìsek L, Havlas Z (2003) Int J Quantum Chem 91:504–510

    Article  CAS  Google Scholar 

  26. Ziegler T (1997) Chem Mater Sci 69

  27. Rauhut G, Puyear S, Wolinski K, Pulay P (1996) J Phys Chem 100(15):6310–6316

    Article  CAS  Google Scholar 

  28. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54(2):724–728

    Article  CAS  Google Scholar 

  29. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  30. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  31. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  32. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  33. Ditchfield R (1974) Mol Phys 27(4):789–807

    Article  CAS  Google Scholar 

  34. Rohlfing CM, Allen LC, Ditchfield R (1984) Chem Phys 87(1):9–15

    Article  CAS  Google Scholar 

  35. Frisch A, Nielsen AB, Holder AJ, Gaussview User Manual, Gaussian Inc., Pittsburg, 2001

  36. Gaussian 98, (Revision A.9), Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA, Gaussian Inc., Pittsburgs PA, 2001

  37. Jian FF, Bai ZS, Li K, Xiao HL (2005) Acta Cryst E61:o393–o395

    CAS  Google Scholar 

  38. Zhao PS, Xu JM, Zhang WG, Jian FF, Zhang L (2007) Struct Chem 18:993–1000

    Article  CAS  Google Scholar 

  39. Lee SY (1998) Bull Korean Chem Soc 19(1):93–98

    CAS  Google Scholar 

  40. Wheeless CJM, Zou X, Liu R (1995) J Phys Chem 99(33):12488–12492

    Article  CAS  Google Scholar 

  41. Lee SY, Boo BH (1996) J Phys Chem 100(37):15073–15078

    Article  CAS  Google Scholar 

  42. Lee SY, Boo BH (1996) J Phys Chem 100(21):8782–8785

    Article  CAS  Google Scholar 

  43. Atalay Y, Avcı D, Başoğlu A, Okur İ (2005) J Mol Struct THEOCHEM 713:21–26

    Article  CAS  Google Scholar 

  44. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  45. Palafox MA, Gill M, Nunez NJ, Rastogi VK, Mittal L, Sharma R (2005) Int J Quant Chem 103:394–421

    Article  CAS  Google Scholar 

  46. Vainilavicius P, Smicius R, Jakubkiene V, Tumkevicius S (2001) Manatshefte für Chemie 132:825–831

    CAS  Google Scholar 

  47. Abboud J-LM, Foces-Foces C, Notario R, Trifonov RE, Volovodenko AP, Ostrovskii VA, Alkorta I, Elguero J (2001) Eur J Org Chem 3013–3024

  48. Palmer MH, Christen D (2004) J Mol Struct 705:177–187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Sakarya University for financial support (P.N: 2007∙02∙02∙001- BAP)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Atalay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dinçer, M., Avcı, D., Şekerci, M. et al. Molecular structure and vibrational and chemical shift assignments of 5-(2-Hydroxyphenyl)-4-(p-tolyl)-2,4-dihydro-1,2,4-triazole-3-thione by DFT and ab initio HF calculations. J Mol Model 14, 823–832 (2008). https://doi.org/10.1007/s00894-008-0324-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0324-x

Keywords

Navigation