Skip to main content
Log in

Enhancement of Plasma Nonlinearities and Generation of a Microwave–Terahertz Supercontinuum in the Field of Subterawatt Mid-Infrared Pulses

  • OPTICS AND LASER PHYSICS
  • Published:
JETP Letters Aims and scope Submit manuscript

The smallness of the velocity \(v\) of laser-field-induced motion of electrons compared to the speed of light c is one of the fundamental physical factors limiting the efficiency of nonlinear optical processes in plasma media. It has been shown in this work that the use of intense ultrashort mid-infrared pulses makes it possible to significantly enhance a wide class of \(v{\text{/}}c\)-weak plasma nonlinearities primarily related to plasma currents induced by the laser field. This allows implementing laser plasma schemes of the efficient generation of coherent broadband terahertz and microwave radiation, i.e., terahertz–microwave supercontinuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Fizmatgiz, Moscow, 1970; Addison Wesley, London, 1970).

  2. N. Blombergen and Y. R. Shen, Phys. Rev. 141, 298 (1966).

    Article  ADS  Google Scholar 

  3. N. G. Basov, V. Yu. Bychenkov, O. N. Krokhin, M. V. Osipov, A. A. Rupasov, V. P. Silin, G. V. Sklizkov, A. N. Starodub, V. T. Tikhonchuk, and A. S. Shikanov, Sov. J. Quantum Electron. 9, 1081 (1979).

    Article  ADS  Google Scholar 

  4. G. A. Mourou, T. Tajima, and S. V. Bulanov, Rev. Mod. Phys. 78, 309 (2006).

    Article  ADS  Google Scholar 

  5. A. M. Zheltikov and N. I. Koroteev, Phys. Usp. 42, 321 (1999).

    Article  ADS  Google Scholar 

  6. U. Teubner and P. Gibbon, Rev. Mod. Phys. 81, 445 (2009).

    Article  ADS  Google Scholar 

  7. S. A. Akhmanov, S. M. Gladkov, N. I. Koroteev, and A. M. Zheltikov, Preprint No. 5 (Phys. Dep., Mosc. State Univ., Moscow, 1988).

  8. R. L. Carman, C. K. Rhodes, and R. F. Benjamin, Phys. Rev. A 24, 2649 (1981).

    Article  ADS  Google Scholar 

  9. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).

    Article  ADS  Google Scholar 

  10. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).

    Article  Google Scholar 

  11. S. M. Gladkov, N. I. Koroteev, A. M. Zheltikov, and A. B. Fedotov, Sov. Tech. Phys. Lett. 19, 610 (1988).

    Google Scholar 

  12. A. B. Fedotov, S. M. Gladkov, N. I. Koroteev, and A. M. Zheltikov, J. Opt. Soc. Am. B 8, 363 (1991).

    Article  ADS  Google Scholar 

  13. A. B. Fedotov, A. N. Naumov, V. P. Silin, S. A. Uryupin, A. M. Zheltikov, A. P. Tarasevich, and D. von der Linde, Phys. Lett. A 271, 407 (2000).

    Article  ADS  Google Scholar 

  14. I. V. Fedotov, A. B. Fedotov, and A. M. Zheltikov, JETP Lett. 89, 170 (2009).

    Article  ADS  Google Scholar 

  15. A. M. Zheltikov, JETP Lett. 90, 90 (2009).

    Article  ADS  Google Scholar 

  16. A. M. Zheltikov, O. S. Il’yasov, and N. I. Koroteev, JETP Lett. 54, 139 (1991).

    ADS  Google Scholar 

  17. K. Y. Kim, A. J. Taylor, J. H. Glownia, and G. Rodriguez, Nat. Photon. 2, 605 (2008).

    Article  Google Scholar 

  18. D. J. Cook and R. M. Hochstrasser, Opt. Lett. 25, 1210 (2000).

    Article  ADS  Google Scholar 

  19. S. Tzortzakis, G. Méchain, G. Patalano, Y.-B. André, B. Prade, M. Franco, A. Mysyrowicz, J.-M. Munier, M. Gheudin, G. Beaudin, and P. Encrenaz, Opt. Lett. 27, 1944 (2002).

    Article  ADS  Google Scholar 

  20. X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).

    Article  ADS  Google Scholar 

  21. M. D. Thomson, M. Kreß, T. Löffler, and H. G. Ros-kos, Laser Photon. Rev. 1, 349 (2007).

    Article  ADS  Google Scholar 

  22. T. Balčiūsunas, D. Lorenc, M. Ivanov, O. Smirnova, A. M. Zheltikov, D. Dietze, K. Unterrainer, T. Rathje, G. G. Paulus, A. Baltuska, and S. Haessler, Opt. Express 23, 15278 (2015).

  23. D. Jang, R. M. Schwartz, D. Woodbury, J. Griff-McMahon, A. H. Younis, H. M. Milchberg, and K.‑Y. Kim, Optica 6, 1338 (2019).

    Article  ADS  Google Scholar 

  24. A. D. Koulouklidis, C. Gollner, V. Shumakova, V. Yu. Fedorov, A. Pugzlys, A. Baltuška, and S. Tzortzakis, Nat. Commun. 11, 292 (2020).

    Article  ADS  Google Scholar 

  25. A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. M. Nazarov, A. A. Voronin, M. V. Rozhko, A. D. Shutov, S. V. Ryabchuk, E. E. Serebryannikov, A. B. Fedotov, and A. M. Zheltikov, Optica 7, 15 (2020).

    Article  ADS  Google Scholar 

  26. A. M. Zheltikov, Phys. Usp. 49, 605 (2006).

    Article  ADS  Google Scholar 

  27. A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, and U. Keller, Opt. Lett. 30, 2657 (2005).

    Article  ADS  Google Scholar 

  28. P. Sprangle, J. Penano, B. Hafizi, and C. Kapetanakos, Phys. Rev. E 69, 066415 (2004).

    Article  ADS  Google Scholar 

  29. I. Thiele, R. Nuter, B. Bousquet, V. Tikhonchuk, S. Skupin, X. Davoine, L. Gremillet, and L. Bergé, Phys. Rev. E 94, 063202 (2016).

    Article  ADS  Google Scholar 

  30. P. Colosimo, G. Doumy, C. I. Blaga, J. Wheeler, C. Hauri, F. Catoire, J. Tate, R. Chirla, A. M. March, G. G. Paulus, H. G. Muller, P. Agostini, and L. F. DiMauro, Nat. Phys. 4, 386 (2008).

    Article  Google Scholar 

  31. E. E. Serebryannikov and A. M. Zheltikov, Phys. Rev. Lett. 113, 043901 (2014).

    Article  ADS  Google Scholar 

  32. T. Popmintchev, M.-C. Chen, D. Popmintchev, et al., Science (Washington, DC, U. S.) 336, 1287 (2012).

    Article  ADS  Google Scholar 

  33. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, A. Pugzlys, E. A. Stepanov, G. Andriukaitis, T. Flöry, S. Alisauskas, A. B. Fedotov, A. Baltuška, and A. M. Zheltikov, Sci. Rep. 5, 8368 (2015).

    Article  ADS  Google Scholar 

  34. A. V. Mitrofanov, A. A. Voronin, D. A. Sidorov-Biryukov, S. I. Mitryukovsky, A. B. Fedotov, E. E. Serebryannikov, D. V. Meshchankin, V. Shumakova, S. Ališauskas, A. Pugžlys, V. Ya. Panchenko, A. Baltuška, and A. M. Zheltikov, Optica 3, 299 (2016).

    Article  ADS  Google Scholar 

  35. A. V. Mitrofanov, A. A. Voronin, M. V. Rozhko, D. A. Sidorov-Biryukov, A. B. Fedotov, A. Pugžlys, V. Shumakova, S. Ališauskas, A. Baltuška, and A. M. Zheltikov, Optica 4, 1405 (2017).

    Article  ADS  Google Scholar 

  36. G. Andriukaitis, T. Balčiunas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, and H. C. Kapteyn, Opt. Lett. 36, 2755 (2011).

    Article  ADS  Google Scholar 

  37. A. A. Lanin, A. B. Fedotov, and A. M. Zheltikov, JETP Lett. 98, 369 (2013).

    Article  ADS  Google Scholar 

  38. A. V. Mitrofanov, D. A. Sidorov-Biryukov, M. V. Rozhko, A. A. Voronin, P. B. Glek, S. V. Ryabchuk, E. E. Serebryannikov, A. B. Fedotov, and A. M. Zheltikov, JETP Lett. 112, 17 (2020).

    Article  ADS  Google Scholar 

  39. T. I. Oh, Y. S. You, N. Jhajj, E. W. Rosenthal, H. M. Milchberg, and K. Y. Kim, New J. Phys. 15, 075002 (2013).

    Article  ADS  Google Scholar 

  40. W. Rogowski and W. Steinhaus, Arch. Elektrotech. 1, 141 (1912).

    Article  Google Scholar 

  41. I. Babushkin, S. Skupin, A. Husakou, C. Köhler, E. Cabrera-Granado, L. Bergé, and J. Herrmann, New J. Phys. 13, 123029 (2011).

    Article  Google Scholar 

  42. A. A. Voronin and A. M. Zheltikov, Phys. Rev. A 101, 043813 (2020).

    Article  ADS  Google Scholar 

  43. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, and V. T. Tikhonchuk, Phys. Rev. Lett. 98, 235002 (2007).

    Article  ADS  Google Scholar 

  44. C. D’Amico, A. Houard, S. Akturk, Y. Liu, M. Franco, B. Prade, A. Couairon, V. Tikhonchuk, and A. Mysyrowicz, New J. Phys. 10, 013015 (2007).

    Google Scholar 

  45. P. Sprangle, B. Hafizi, J. R. Penano, R. F. Hubbard, A. Ting, A. Zigler, and T. M. Antonsen, Phys. Rev. Lett. 85, 5110 (2000).

    Article  ADS  Google Scholar 

  46. P. Sprangle, B. Hafizi, J. R. Penano, R. F. Hubbard, A. Ting, C. I. Moore, D. F. Gordon, A. Zigler, D. Kaganovich, and T. M. Antonsen, Phys. Rev. E 63, 056405 (2001).

    Article  ADS  Google Scholar 

  47. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).

    Article  ADS  Google Scholar 

  48. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J.‑P. Wolf, Rep. Prog. Phys. 70, 1633 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Calculations were performed with resources of the Computational Center, Moscow State University.

Funding

This work was supported by the Russian Science Foundation (project no. 18-72-10109, study of cascade spectral–temporal transformations of ultrashort laser pulses; project no. 20-12-00088, study on broadband nonlinear optics; project no. 19-72-10054, study on the optics of ultrashort pulses of highly supercritical peak power), by the Russian Foundation for Basic Research (project nos. 20-21-00131, 20-21-00140, 18-29-20031, and 19-02-00473), by the Welch Foundation (grant no. A-1801-20180324), and by the Ministry of Science and Higher Education of the Russian Federation (project no. 075-15-2020-801). M.V. Rozhko acknowledges the support of the Council of the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (project no. MK-3820.2019.2), the Russian Foundation for Basic Research (project nos. 20-32-90228 and 18-02-40034), and the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS (project no. 18-2-6-157-1). P.B. Glek acknowledges the partial support of the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS (project no. 20-2-10-2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Zheltikov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitrofanov, A.V., Sidorov-Biryukov, D.A., Voronin, A.A. et al. Enhancement of Plasma Nonlinearities and Generation of a Microwave–Terahertz Supercontinuum in the Field of Subterawatt Mid-Infrared Pulses. Jetp Lett. 113, 301–307 (2021). https://doi.org/10.1134/S0021364021050076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021050076

Navigation