Skip to main content
Log in

Thermal Stability of Hydrogen Clusters at Graphene and Stone—Wales Graphene Surfaces

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

In the framework of the nonorthogonal tight-binding model, the possibility to form different thermally stable elements of the hydrogen pattern at graphene and Stone—Wales graphene surfaces is studied. The latter material is the recently predicted allotrope of graphene. The migration of a hydrogen atom adsorbed on these structures is numerically analyzed. The activation energies of migration of a hydrogen atom on the surfaces of graphene and Stone—Wales graphene are equal to 0.52 and 0.84 eV, respectively. The thermal stability of hydrogen clusters having the form of hexatomic rings and located on the surface of graphene, as well as the stability of the pent-, hex-, and heptatomic rings on the surface of Stone—Wales graphene, is estimated. The corresponding activation energies (1.61, 1.25, 1.36, and 1.27 eV, respectively), as well as the frequency-dependent factors in the Arrhenius formula characterizing the thermal decay, are determined. The lifetimes of these clusters at freezing and boiling temperatures of water are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London, U.K.) 438, 197 (2005).

    ADS  Google Scholar 

  3. A. E. Galashev and O. R. Rakhmanova, Phys. Usp. 57, 970 (2014).

    ADS  Google Scholar 

  4. G. E. Volovik, JETP Lett. 107, 516 (2018).

    ADS  Google Scholar 

  5. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    ADS  Google Scholar 

  6. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U. S.) 323, 610 (2009).

    ADS  Google Scholar 

  7. Y. Li, L. Xu, H. Liu, and Y. Li, Chem. Soc. Rev. 43, 2572 (2014).

    Google Scholar 

  8. Y. Gao, T. Cao, F. Cellini, C. Berger, W. A. de Heer, E. Tosatti, E. Riedo, and A. Bongiorno, Nat. Nanotech. 13, 133 (2018).

    ADS  Google Scholar 

  9. P. V. Bakharev, M. Huang, M. Saxena, S. W. Lee, S. H. Joo, S. O. Park, J. Dong, D. Camacho-Mojica, S. Ji, S. Jin, Y. Kwon, M. Biswal, F. Ding, S. K. Kwak, Z. Lee, and R. S. Ruoff, Nat. Nanotech. 15, 59 (2020).

    ADS  Google Scholar 

  10. X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).

    ADS  Google Scholar 

  11. Y. Liu, G. Wang, Q. Huang, L. Guo, and X. Chen, Phys. Rev. Lett. 108, 225505 (2012).

    ADS  Google Scholar 

  12. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Nano Lett. 15, 6182 (2015).

    ADS  Google Scholar 

  13. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Proc. Nat. Acad. Sci. U. S. A. 112, 2372 (2015).

    ADS  Google Scholar 

  14. E. A. Belenkov, V. V. Mavrinskii, T. E. Belenkova, and V. M. Chernov, J. Exp. Theor. Phys. 120, 820 (2015).

    ADS  Google Scholar 

  15. L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, and D. G. Kvashnin, JETP Lett. 90, 134 (2009).

    ADS  Google Scholar 

  16. J. Zhou, Q. Wang, Q. Sun, X. C. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).

    ADS  Google Scholar 

  17. H. Einollahzadeh, S. M. Fazeli, and R. S. Dariani, Sci. Technol. Adv. Mater. 17, 610 (2017).

    Google Scholar 

  18. G. M. de Araüjo, L. Codognoto, and F. R. Simões, J. Solid State Electrochem. (2020). https://doi.org/10.1007/s10008-020-04517-1

  19. X. Li, Q. Wang, and P. Jena, J. Phys. Chem. Lett. 8, 3234 (2017).

    Google Scholar 

  20. W. Zhang, C. Chai, Q. Fan, Y. Song, and Y. Yang, Chem. Nano. Mater. 6, 139 (2020).

    Google Scholar 

  21. C. Kou, Y. Tian, M. Zhang, E. Zurek, X. Qu, X. Wang, K. Yin, Y. Yan, L. Gao, M. Lu, and W. Yang, 2D Mater. 7, 025047 (2020).

    Google Scholar 

  22. J. Liu and H. Lu, RSC Adv. 9, 34481 (2019).

    Google Scholar 

  23. H. Yin, X. Shi, C. He, M. Martinez-Canales, J. Li, C. J. Pickard, C. Tang, T. Ouyang, C. Zhang, and J. Zhong, Phys. Rev. B 99, 041405 (2019).

    ADS  Google Scholar 

  24. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    ADS  Google Scholar 

  25. Yu. E. Lozovik and A. M. Popov, Phys. Usp. 40, 717 (1997).

    ADS  Google Scholar 

  26. A. I. Podlivaev and L. A. Openov, JETP Lett. 101, 173 (2015).

    ADS  Google Scholar 

  27. A. I. Podlivaev, JETP Lett. 110, 691 (2019).

    ADS  Google Scholar 

  28. S. Lebégue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson, Phys. Rev. B 79, 245117 (2009).

    ADS  Google Scholar 

  29. A. I. Podlivaev and L. A. Openov, JETP Lett. 106, 110 (2017).

    ADS  Google Scholar 

  30. X. Huang, M. Ma, L. Cheng, and L. Liu, Phys. E (Amsterdam, Neth.) 115, 113701 (2020). https://doi.org/10.1016/j.physe.2019.113701.

    Google Scholar 

  31. L. A. Openov and A. I. Podlivaev, JETP Lett. 90, 459 (2009).

    ADS  Google Scholar 

  32. L. A. Chernozatonskii, P. B. Sorokin, E. E. Belova, J. Bruning, and A. S. Fedorov, JETP Lett. 85, 77 (2007).

    ADS  Google Scholar 

  33. B. S. Pujari, S. Gusarov, M. Brett, and A. Kovalenko, Phys. Rev. B 84, 041402 (2011).

    ADS  Google Scholar 

  34. V. I. Artyukhov and L. A. Chernozatonskii, J. Phys. Chem. A 114, 5389 (2010).

    Google Scholar 

  35. K. S. Grishakov, K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Appl. Surf. Sci. 463, 1051 (2019).

    ADS  Google Scholar 

  36. L. A. Openov and A. I. Podlivaev, Tech. Phys. 57, 1603 (2012).

    Google Scholar 

  37. R. Balog, B. Jørgensen, J. Wells, E. Lægsgaard, P. Hofmann, F. Besenbacher, and L. Hornekær, J. Am. Chem. Soc. 131, 8744 (2009).

    Google Scholar 

  38. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Google Scholar 

  39. L. A. Openov and A. I. Podlivaev, JETP Lett. 109, 710 (2019).

    ADS  Google Scholar 

  40. A. I. Podlivaev, Phys. Solid State 62, 1109 (2020).

    ADS  Google Scholar 

  41. L. A. Openov and A. I. Podlivaev, Phys. Solid State 61, 2553 (2019).

    ADS  Google Scholar 

  42. L. A. Openov and A. I. Podlivaev, JETP Lett. 104, 193 (2016).

    ADS  Google Scholar 

  43. L. A. Openov and A. I. Podlivaev, JETP Lett. 107, 713 (2018).

    ADS  Google Scholar 

  44. M. M. Maslov and K. P. Katin, Chem. Phys. Lett. 644, 280 (2016).

    ADS  Google Scholar 

  45. K. P. Katin, K. S. Grishakov, A. I. Podlivaev, and M. M. Maslov, J. Chem. Theory Comput. 16, 2065 (2020).

    Google Scholar 

  46. G. V. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

    ADS  Google Scholar 

  47. A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, P. Pyykkö, and R. M. Nieminen, Phys. Rev. Lett. 102, 126807 (2009).

    ADS  Google Scholar 

  48. Y. Xia, Z. Li, and H. J. Kreuzer, Surf. Sci. 605, 170 (2011).

    Google Scholar 

  49. D. V. Boukhvalov, Phys. Chem. Chem. Phys. 12, 15367 (2010).

    Google Scholar 

  50. K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Phys. Lett. A 381, 2686 (2017).

    ADS  Google Scholar 

  51. X. Zhao, R. A. Outlaw, J. J. Wang, M. Y. Zhu, G. D. Smith, and B. C. Hollowaya, J. Chem. Phys. 124, 194704 (2006).

    ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-02-00278-a) and by the Ministry of Science and Higher Education of the Russian Federation (Program of Excellence for the National Research Nuclear University MEPhI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 11, pp. 728–734.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I. Thermal Stability of Hydrogen Clusters at Graphene and Stone—Wales Graphene Surfaces. Jetp Lett. 111, 613–618 (2020). https://doi.org/10.1134/S0021364020110077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020110077

Navigation