Skip to main content
Log in

Stone—Wales Graphane: Its Structure, Properties, and Thermal Stability

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A new two-dimensional hydrocarbon material formed upon complete chemical bonding of hydrogen to the both sides of Stone-Wales graphene, which is a recently predicted new allotrope of graphene, is numerically studied. The band gap Eg = 5.48 eV, the binding energy, and bond lengths, as well as the electron and phonon densities states, are determined. The anisotropy of the Young modulus is revealed. The heating-induced processes of defect formation are studied by the real-time molecular dynamics method. It is shown that the main thermal decomposition channel is the desorption of atomic hydrogen. The second most important decomposition channel is the desorption of molecular hydrogen. For the main decomposition channel, the activation energy Ea = 2.62 eV and the frequency-dependent factor A = 1.1 × 1018 s−1 in the Arrhenius law are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. A. E. Galashev and O. R. Rakhmanova, Phys. Usp. 57, 970 (2014).

    Article  ADS  Google Scholar 

  3. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London, U.K.) 438, 197 (2005).

    Article  ADS  Google Scholar 

  4. G. E. Volovik, JETP Lett. 107, 516 (2018).

    Article  ADS  Google Scholar 

  5. X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).

    Article  ADS  Google Scholar 

  6. Y. Liu, G. Wang, Q. Huang, L. Guo, and X. Chen, Phys. Rev. Lett. 108, 225505 (2012).

    Article  ADS  Google Scholar 

  7. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Nano Lett. 15, 6182 (2015).

    Article  ADS  Google Scholar 

  8. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Proc. Nat. Acad. Sci. U. S. A. 112, 2372 (2015).

    Article  ADS  Google Scholar 

  9. E. A. Belenkov, V. V. Mavrinskii, T. E. Belenkova, and V. M. Chernov, J. Exp. Theor. Phys. 120, 820 (2015).

    Article  ADS  Google Scholar 

  10. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  ADS  Google Scholar 

  11. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U. S.) 323, 610 (2009).

    Article  ADS  Google Scholar 

  12. Y. Li, L. Xu, H. Liu, and Y. Li, Chem. Soc. Rev. 43, 2572 (2014).

    Article  Google Scholar 

  13. Y. Gao, T. Cao, F. Cellini, C. Berger, W. A. de Heer, E. Tosatti, E. Riedo, and A. Bongiorno, Nat. Nanotechnol. 13, 133 (2018).

    Article  ADS  Google Scholar 

  14. P. V. Bakharev, M. Huang, M. Saxena, S. W. Lee, S. H. Joo, S. O. Park, J. Dong, D. Camacho-Mojica, S. Ji, Y. Kwon, M. Biswal, F. Ding, S. K. Kwak, Z. Lee, and R. S. Ruoff, arXiv: 1901.02131.

  15. K. Kaiser, L. M. Scriven, F. Schulz, P. Gawel, L. Gross, and H. L. Anderson, Science (Washington, DC, U. S.) (2019). https://doi.org/10.1126/science.aay1914

    Article  ADS  Google Scholar 

  16. L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, and D. G. Kvashnin, JETP Lett. 90, 134 (2009).

    Article  ADS  Google Scholar 

  17. J. Zhou, Q. Wang, Q. Sun, X. C. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).

    Article  ADS  Google Scholar 

  18. H. Einollahzadeh, S. M. Fazeli, and R. S. Dariani, Sci. Technol. Adv. Mater. 17, 610 (2017).

    Article  Google Scholar 

  19. S. Lebegue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson, Phys. Rev. B 79, 245117 (2009).

    Article  ADS  Google Scholar 

  20. A. I. Podlivaev and L. A. Openov, JETP Lett. 106, 110 (2017).

    Article  ADS  Google Scholar 

  21. L. A. Openov and A. I. Podlivaev, JETP Lett. 90, 459 (2009).

    Article  ADS  Google Scholar 

  22. L. A. Chernozatonskii, P. B. Sorokin, E. E. Belova, J. Bruning, and A. S. Fedorov, JETP Lett. 85, 77 (2007).

    Article  ADS  Google Scholar 

  23. H. Yin, X. Shi, C. He, M. Martinez-Canales, J. Li, C. J. Pickard, C. Tang, T. Ouyang, C. Zhang, and J. Zhong, Phys. Rev. B 99, 041405 (2019).

    Article  ADS  Google Scholar 

  24. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  25. X. Li, Q. Wang, and P. Jena, J. Phys. Chem. Lett. 8, 3234 (2017).

    Article  Google Scholar 

  26. X. Huang, M. Ma, L. Cheng, and L. Liu, Phys. E (Amsterdam, Neth.) 115, 113701 (2020). https://doi.org/10.1016/j.physe.2019.113701

    Article  Google Scholar 

  27. V. I. Artyukhov and L. A. Chernozatonskii, J. Phys. Chem. A 114, 5389 (2010).

    Article  Google Scholar 

  28. L. A. Openov and A. I. Podlivaev, Tech. Phys. Lett. 36, 31 (2010).

    Article  ADS  Google Scholar 

  29. L. A. Openov and A. I. Podlivaev, Semiconductors 53, 717 (2019).

    Article  ADS  Google Scholar 

  30. L. A. Openov and A. I. Podlivaev, JETP Lett. 109, 710 (2019).

    Article  ADS  Google Scholar 

  31. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  32. L. A. Openov and A. I. Podlivaev, JETP Lett. 103, 185 (2016).

    Article  ADS  Google Scholar 

  33. L. A. Openov and A. I. Podlivaev, JETP Lett. 107, 713 (2018).

    Article  ADS  Google Scholar 

  34. M. M. Maslov and K. P. Katin, Chem. Phys. Lett. 644, 280 (2016).

    Article  ADS  Google Scholar 

  35. C. D. Reddy, S. Rajendran, and K. M. Liew, Nanotechnology 17, 864 (2006).

    Article  ADS  Google Scholar 

  36. K. S. Grishakov, K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Appl. Surf. Sci. 463, 1051 (2019).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-02-00278-a) and by the Ministry of Science and Higher Education of the Russian Federation (Program of Excellence for the National Research Nuclear University MEPhI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2019, Vol. 110, No. 10, pp. 692–697.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I. Stone—Wales Graphane: Its Structure, Properties, and Thermal Stability. Jetp Lett. 110, 691–696 (2019). https://doi.org/10.1134/S0021364019220107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364019220107

Navigation