Skip to main content
Log in

Stone–Wales Bilayer Graphene: Structure, Stability, and Interlayer Heat Transfer

  • CONDENSED MATTER
  • Published:
JETP Letters Aims and scope Submit manuscript

The structure, stability, and interlayer heat transfer of Stone–Wales bilayer graphene have been studied within a nonorthogonal tight binding model. The most stable configuration has been identified among several metastable isomers differing in the mutual arrangement of the layers. It has been established that the structure under consideration is characterized by a stronger interlayer interaction than bilayer graphene, but its stiffness in the vertical direction is 17% smaller. The heat transfer between two layers of Stone–Wales graphene, one of which is initially cooled to 0 K and the second is heated to 77−7000 K, has been studied by the molecular dynamics method. The strain dependence of the interlayer heat transfer of the bilayer structure under study has been determined. It has been shown that the intensity of interlayer heat transfer strongly depends on the temperature and strain. Features of the interlayer interaction in Stone–Wales bilayer graphene that are atypical of usual bilayer graphene have been revealed and explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science (Washington, DC, U. S.) 313, 951 (2006).

    Article  ADS  Google Scholar 

  2. Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda, K. Watanabe, T. Taniguchi, T. Senthi, and P. Jarillo-Herrero, Phys. Rev. Lett. 124, 076801 (2020).

  3. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature (London, U.K.) 556, 43 (2018).

    Article  ADS  Google Scholar 

  4. G. E. Volovik, JETP Lett. 107, 516 (2018).

    Article  ADS  Google Scholar 

  5. Y. Zhang, T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, Nature (London, U.K.) 459, 820 (2009).

    Article  ADS  Google Scholar 

  6. G. Fiori and G. Iannaccone, IEEE Electron Dev. Lett. 30, 261 (2009).

    Article  ADS  Google Scholar 

  7. M.-C. Chen, C.-L. Hsu, and T.-J. Hsueh, IEEE Electron Dev. Lett. 35, 590 (2014).

    Article  ADS  Google Scholar 

  8. Y. Tang, Z. Liu, Z. Shen, W. Chen, D. Ma, and X. Dai, Sens. Actuators, B 238, 182 (2017).

    Article  Google Scholar 

  9. L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, and D. G. Kvashnin, JETP Lett. 90, 134 (2009).

    Article  ADS  Google Scholar 

  10. J. Liu and H. Lu, RSC Adv. 9, 34481 (2019).

  11. X. Li, Q. Wang, and P. Jena, J. Phys. Chem. Lett. 8, 3234 (2017).

    Article  Google Scholar 

  12. Y. Liu, G.Wang, Q. Huang, L. Guo, and X. Chen, Phys. Rev. Lett. 108, 225505 (2012).

  13. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Nano Lett. 15, 6182 (2015).

    Article  ADS  Google Scholar 

  14. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Proc. Natl. Acad. Sci. U. S. A. 112, 2372 (2015).

    Article  ADS  Google Scholar 

  15. E. A. Belenkov, V. V. Mavrinskii, T. E. Belenkova, and V. M. Chernov, J. Exp. Theor. Phys. 120, 820 (2015).

    Article  ADS  Google Scholar 

  16. H. Yin, X. Shi, C. He, M. Martinez-Canales, J. Li, C. J. Pickard, C. Tang, T. Ouyang, C. Zhang, and J. Zhong, Phys. Rev. B 99, 041405 (2019).

  17. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  18. L. A. Openov and A. I. Podlivaev, JETP Lett. 109, 710 (2019).

    Article  ADS  Google Scholar 

  19. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  20. Yu. E. Lozovik and A. M. Popov, Phys. Usp. 40, 717 (1997).

    Article  ADS  Google Scholar 

  21. T. Dumitricǎ and B. I. Yakobson, Appl. Phys. Lett. 84, 2775 (2004).

    Article  ADS  Google Scholar 

  22. A. J. M. Nascimento and R. W. Nunes, Nanotechnology 24, 435707 (2013).

  23. J. Ma, D. Alfe, A. Michaelides, and E. Wang, Phys. Rev. B 80, 033407 (2009).

  24. S. Deng and V. Berry, Mater. Today 19, 197 (2016).

    Article  Google Scholar 

  25. J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen, Nat. Mater. 7, 151 (2008).

    Article  ADS  Google Scholar 

  26. P. M. Korusenko, V. V. Bolotov, S. N. Nesov, S. N. Povoroznyuk, and I. P. Khailov, Nucl. Instrum. Methods Phys. Res., Sect. B 358, 131 (2015).

    Google Scholar 

  27. V. V. Bolotov, P. M. Korusenko, S. N. Nesov, S. N. Povoroznyuk, and E. V. Knyazev, Nucl. Instrum. Methods Phys. Res., Sect. B 337, 1 (2014).

    Google Scholar 

  28. J. T. Robinson, J. S. Burgess, C. E. Junkermeier, S. C. Badescu, T. L. Reinecke, F. K. Perkins, M. K. Zalalutdniov, J. W. Baldwin, J. C. Culbertson, P. E. Sheehan, and E. S. Snow, Nano Lett. 10, 3001 (2010).

    Article  ADS  Google Scholar 

  29. K. S. Grishakov, K. P. Katin, V. S. Prudkovskiy, and M. M. Maslov, Appl. Surf. Sci. 463, 1051 (2019).

    Article  ADS  Google Scholar 

  30. B. Li, L. Zhou, D.Wu, H. Peng, K. Yan, Y. Zhou, and Z. Liu, ACS Nano 5, 5957 (2011).

    Article  Google Scholar 

  31. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U. S.) 323, 610 (2009).

    Article  ADS  Google Scholar 

  32. A. I. Podlivaev, K. C. Grishakov, K. P. Katin, and M. M. Maslov, JETP Lett. 113, 169 (2021).

    Article  ADS  Google Scholar 

  33. J. A. Baimova, L. Bo, S. V. Dmitriev, K. Zhou, and A. A. Nazarov, Europhys. Lett. 103, 46001 (2013).

    Article  ADS  Google Scholar 

  34. S. V. Dmitriev, Yu. A. Baimova, A. V. Savin, and Yu. S. Kivshar’, JETP Lett. 93, 571 (2011).

    Article  ADS  Google Scholar 

  35. L. A. Openov and A. I. Podlivaev, Phys. Solid State 58, 847 (2016).

    Article  ADS  Google Scholar 

  36. J. H. Los, K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino, Phys. Rev. B 91, 045415 (2015).

  37. L. A. Openov and A. I. Podlivaev, JETP Lett. 103, 185 (2016).

    Article  ADS  Google Scholar 

  38. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science (Washington, DC, U. S.) 321, 385 (2008).

    Article  ADS  Google Scholar 

  39. O. L. Blakslee, J. Appl. Phys. 41, 3373 (1970).

    Article  ADS  Google Scholar 

  40. E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A 32, 3030 (1985).

    Article  ADS  Google Scholar 

  41. C. E. Klots, Z. Phys. D 20, 105 (1991).

    Article  ADS  Google Scholar 

  42. J. V. Andersen, E. Bonderup, and K. Hansen, J. Chem. Phys. 114, 6518 (2001).

    Article  ADS  Google Scholar 

  43. K. P. Katin, K. S. Grishakov, A. I. Podlivaev, and M. M. Maslov, J. Chem. Theory Comput. 16, 2065 (2020).

    Article  Google Scholar 

  44. K. P. Katin and M. M. Maslov, J. Phys. Chem. Solids 108, 82 (2017).

    Article  ADS  Google Scholar 

  45. A. I. Podlivaev, JETP Lett. 111, 691 (2020).

    Article  ADS  Google Scholar 

  46. A. I. Podlivaev and K. P. Katin, JETP Lett. 92, 52 (2010).

    Article  ADS  Google Scholar 

  47. A. I. Podlivaev, Phys. Solid State 62, 1109 (2020).

    Article  ADS  Google Scholar 

  48. E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Phys. Rev. Lett. 102, 235502 (2009).

  49. J. A. Baimova, S. V. Dmitriev, and K. Zhou, Phys. Status Solidi B 249, 1393 (2012).

    Article  ADS  Google Scholar 

  50. R. Balog, B. Jørgensen, J. Wells, E. Løgsgaard, P. Hofmann, F. Besenbacher, and L. Hornekør, J. Am. Chem. Soc. 131, 8744 (2009).

    Article  Google Scholar 

  51. I. V. Lebedova, A. A. Knizhnik, A. M. Popov, Y. E. Lozovik, and B. V. Potapkin, Phys. Chem. Chem. Phys. 13, 5687 (2011).

    Article  Google Scholar 

  52. G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Phys. Rev. B 88, 045430 (2013).

  53. F. Pobell, Matter and Methods at Low Temperatures (Springer, Berlin, 2007), p. 64.

    Book  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (Program of Excellence for the National Research Nuclear University MEPhI) and by the Council of the President of the Russian Federation for Support of Young Scientists and Leading Scientific Schools (project no. MK-722.2020.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Grishakov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I., Grishakov, K.S., Katin, K.P. et al. Stone–Wales Bilayer Graphene: Structure, Stability, and Interlayer Heat Transfer. Jetp Lett. 114, 143–149 (2021). https://doi.org/10.1134/S0021364021150078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364021150078

Navigation