Skip to main content
Log in

Decay Dynamics of Hydrogen Clusters on Surfaces of Graphene and Stone–Wales Graphene

  • ATOMIC CLUSTERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermal stability of hydrogen clusters disposed on surfaces of graphene and the Stone–Wales graphene that is a graphene allotrope discovered recently is studied by the molecular dynamics method. The studies are performed for hydrogen rings consisting of five, six, and seven atoms and also compact clusters consisting of 16 hydrogen atoms adsorbed on these carbon structures. The hydrogen cluster decay channels and the temperature dependences of their lifetimes are determined. The binding energies and the frequency factors in the Arrhenius law are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London, U.K.) 438, 197 (2005).

    Article  ADS  Google Scholar 

  3. A. E. Galashev and O. R. Rakhmanova, Phys. Usp. 57, 970 (2014).

    Article  ADS  Google Scholar 

  4. J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).

    Article  ADS  Google Scholar 

  5. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U. S.) 323, 610 (2009).

    Article  ADS  Google Scholar 

  6. Y. Li, L. Xu, H. Liu, and Y. Li, Chem. Soc. Rev. 43, 2572 (2014).

    Article  Google Scholar 

  7. Y. Gao, T. Cao, F. Cellini, C. Berger, W. A. de Heer, E. Tosatti, E. Riedo, and A. Bongiorno, Nat. Nanotechnol. 13, 133 (2018).

    Article  ADS  Google Scholar 

  8. P. V. Bakharev, M. Huang, M. Saxena, S. W. Lee, S. H. Joo, S. O. Park, J. Dong, D. Camacho-Mojica, S. Ji, Y. Kwon, M. Biswal, F. Ding, S. K. Kwak, Z. Lee, and R. S. Ruoff, https://arxiv.org/ftp/arxiv/papers/1901/1901.02131.pdf (2019).

  9. L. A. Chernozatonskii, P. B. Sorokin, A. G. Kvashnin, and D. G. Kvashnin, JETP Lett. 90, 134 (2009).

    Article  ADS  Google Scholar 

  10. J. Zhou, Q. Wang, Q. Sun, X. C. Chen, Y. Kawazoe, and P. Jena, Nano Lett. 9, 3867 (2009).

    Article  ADS  Google Scholar 

  11. X.-L. Sheng, H.-J. Cui, F. Ye, Q.-B. Yan, Q.-R. Zheng, and G. Su, J. Appl. Phys. 112, 074315 (2012).

    Article  ADS  Google Scholar 

  12. Y. Liu, G. Wang, Q. Huang, L. Guo, and X. Chen, Phys. Rev. Lett. 108, 225505 (2012).

    Article  ADS  Google Scholar 

  13. Z. Wang, X.-F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao, and A. R. Oganov, Nano Lett. 15, 6182 (2015).

    Article  ADS  Google Scholar 

  14. S. Zhang, J. Zhou, Q. Wang, X. Chen, Y. Kawazoe, and P. Jena, Proc. Natl. Acad. Sci. U. S. A. 112, 2372 (2015).

    Article  ADS  Google Scholar 

  15. E. A. Belenkov, V. V. Mavrinskii, T. E. Belenkova, and V. M. Chernov, J. Exp. Theor. Phys. 120, 820 (2015).

    Article  ADS  Google Scholar 

  16. H. Einollahzadeh, S. M. Fazeli, and R. S. Dariani, Sci. Technol. Adv. Mater. 17, 610 (2017).

    Article  Google Scholar 

  17. G. M. de Araújo, L. Codognoto, and F. R. Simões, J. Solids State Electrochem. 24, 1857 (2020). https://doi.org/10.1007/s10008-020-04517-1

  18. X. Li, Q. Wang, and P. Jena, J. Phys. Chem. Lett. 8, 3234 (2017).

    Article  Google Scholar 

  19. W. Zhang, C. Chai, Q. Fan, Y. Song, and Y. Yang, Chem. NanoMater 6, 139 (2020).

    Google Scholar 

  20. C. Kou, Y. Tian, M. Zhang, E. Zurek, X. Qu, X. Wang, K. Yin, Y. Yan, L. Gao, M. Lu, and W. Yang, 2D Mater. 7, 025047 (2020).

  21. J. Liu and H. Lu, RSC Adv. 9, 34481 (2019).

  22. H. Yin, X. Shi, C. He, M. Martinez-Canales, J. Li, C. J. Pickard, C. Tang, T. Ouyang, C. Zhang, and J. Zhong, Phys. Rev. B 99, 041405 (2019).

    Article  ADS  Google Scholar 

  23. A. J. Stone and D. J. Wales, Chem. Phys. Lett. 128, 501 (1986).

    Article  ADS  Google Scholar 

  24. A. I. Podlivaev, JETP Lett. 110, 691 (2019).

    Article  ADS  Google Scholar 

  25. S. Lebègue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson, Phys. Rev. B 79, 245117 (2009).

    Article  ADS  Google Scholar 

  26. A. I. Podlivaev and L. A. Openov, JETP Lett. 106, 110 (2017).

    Article  ADS  Google Scholar 

  27. X. Huang, M. Ma, L. Cheng, and L. Liu, Phys. E (Amsterdam, Neth.) 115, 113701 (2020).

  28. L. A. Openov and A. I. Podlivaev, JETP Lett. 90, 459 (2009).

    Article  ADS  Google Scholar 

  29. L. A. Chernozatonskii, P. B. Sorokin, E. E. Belova, J. Bruning, and A. S. Fedorov, JETP Lett. 85, 77 (2007).

    Article  ADS  Google Scholar 

  30. A. I. Podlivaev, JETP Lett. 111, 613 (2020).

    Article  ADS  Google Scholar 

  31. E. M. Pearson, T. Halicioglu, and W. A. Tiller, Phys. Rev. A 32, 3030 (1985).

    Article  ADS  Google Scholar 

  32. C. Xu and G. E. Scuseria, Phys. Rev. Lett. 72, 669 (1994).

    Article  ADS  Google Scholar 

  33. J. Jellinek and A. Goldberg, J. Chem. Phys. 113, 2570 (2000).

    Article  ADS  Google Scholar 

  34. C. E. Klots, Z. Phys. D 20, 105 (1991).

    Article  ADS  Google Scholar 

  35. J. V. Andersen, E. Bonderup, and K. Hansen, J. Chem. Phys. 114, 6518 (2001).

    Article  ADS  Google Scholar 

  36. M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).

    Article  Google Scholar 

  37. K. P. Katin and M. M. Maslov, J. Phys. Chem. Solids 108, 82 (2017).

    Article  ADS  Google Scholar 

  38. K. P. Katin, S. A. Shostachenko, A. I. Avhadieva, and M. M. Maslov, Adv. Phys. Chem. 2015, 506894 (2015).

    Article  Google Scholar 

  39. A. I. Podlivaev and L. A. Openov, Phys. Solid State 60, 162 (2018).

    Article  ADS  Google Scholar 

  40. L. A. Openov and A. I. Podlivaev, Phys. Solid State 60, 799 (2018).

    Article  ADS  Google Scholar 

  41. L. A. Openov and A. I. Podlivaev, JETP Lett. 109, 710 (2019).

    Article  ADS  Google Scholar 

  42. L. A. Openov and A. I. Podlivaev, Semiconductors 53, 717 (2019).

    Article  ADS  Google Scholar 

  43. I. Yu. Dolinskii, K. P. Katin, K. S. Grishakov, V. S. Prudkovskii, N. I. Kargin, and M. M. Maslov, Phys. Solid State 60, 821 (2018).

    Article  ADS  Google Scholar 

  44. K. P. Katin, K. S. Grishakov, A. I. Podlivaev, and M. M. Maslov, J. Chem. Theory Comp. 16, 2065 (2020).

    Article  Google Scholar 

  45. V. M. Bedanov, G. V. Gadiyak, and Yu. E. Lozovik, Phys. Lett. A 109, 289 (1985).

    Article  ADS  Google Scholar 

  46. J. H. Los, K. V. Zakharchenko, M. I. Katsnelson, and A. Fasolino, Phys. Rev. B 91, 045415 (2015).

    Article  ADS  Google Scholar 

  47. L. A. Openov and A. I. Podlivaev, Phys. Solid State 58, 847 (2016).

    Article  ADS  Google Scholar 

  48. A. J. M. Nascimento, and R. W. Nunes, Nanotechnology 24, 435707 (2013).

    Article  ADS  Google Scholar 

  49. A. I. Podlivaev and L. A. Openov, Phys. Solid State 57, 2562 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-02-00278-a) and the Ministry of Science and Higher Education of the Russian Federation (the Program of enhancing the competition ability of the National Research Nuclear University MIFI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Podlivaev.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podlivaev, A.I. Decay Dynamics of Hydrogen Clusters on Surfaces of Graphene and Stone–Wales Graphene. Phys. Solid State 62, 2452–2458 (2020). https://doi.org/10.1134/S1063783420120227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420120227

Keywords:

Navigation