Skip to main content
Log in

An Experimental Setup for Microbial Fuel Cells Construction, Evaluation, and Study

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

An experimental setup for microbial fuel cells evaluation and study is proposed in this communication. The essential steps to build a microbial fuel cell, together with the evaluation and test platform, are described in detail. The main goal is to allow and support experimental setup replication. Two possible experimental studies and data obtained are presented and discussed: MFC equivalent circuit parameters determination and biochemical behaviour evaluation under constant load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Liu, H., Logan, B.E., and Liu Hong, L.E.B., Environ. Sci. Technol., 2004, vol. 38, no. 14, p. 4040. https://doi.org/10.1021/es0499344

    Article  ADS  Google Scholar 

  2. Min, B., Cheng, S., and Logan, B.E., Water Res., 2005, vol. 39, no. 9, p. 1675. https://doi.org/10.1016/j.watres.2005.02.002

    Article  Google Scholar 

  3. Min, B. and Logan, B.E., Environ. Sci. Technol., 2004, vol. 38, no. 21, p. 5809. https://doi.org/10.1021/es0491026

    Article  ADS  Google Scholar 

  4. Jang, J.K., Pham, T.H., Chang, I.S., Kang, K.H., Moon, H., Cho, K.S., and Kim, B.H., Process Biochem., 2004, vol. 39, no. 8, p. 1007. https://doi.org/10.1016/S0032-9592(03)00203-6

    Article  Google Scholar 

  5. He, Z., Minteer, S., and Angenent, L., Environ. Sci. Technol., 2005, vol. 39, no. 14, p. 5262. https://doi.org/10.1021/es0502876

    Article  ADS  Google Scholar 

  6. Aelterman, P., Rabaey, K., and Verstraete, W., Environ. Sci. Technol., 2006, vol. 40, no. 10, p. 3388. https://doi.org/10.1021/es0525511

    Article  ADS  Google Scholar 

  7. Liu, H., Ramnarayanan, R., and Logan, B.E., Environ. Sci. Technol., 2004, vol. 38, no. 7, p. 2281. https://doi.org/10.1021/es034923g

    Article  ADS  Google Scholar 

  8. Fraiwan, A., Mukherjee, S., Sundermier, S., and Choi, S., Proc. 2013 IEEE 26th Int. Conference on Micro Electro Mechanical Systems (MEMS 2013), Taipei, 2013, no. 13369702, p. 809. https://doi.org/10.1109/MEMSYS.2013.6474366

  9. Degrenne, N., Buret, F., Morel, F., Adami, S.E., Labrousse, D., Allard, B., and Zaoui, A., Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Phoenix, AZ, 2011, no. 12343962, p. 889. https://doi.org/10.1109/ECCE.2011.6063865

  10. Kim, J.R., Min, B., and Logan, B.E., Appl. Microbiol. Biotechnol., 2005, vol. 68, no. 1, p. 23. https://doi.org/10.1007/s00253-004-1845-6

    Article  Google Scholar 

  11. Papaharalabos, G., Greenman, J., Melhuish, C., and Ieropoulos, I., Int. J. Hydrogen Energy, 2015, vol. 40, no. 11, p. 4263. https://doi.org/10.1016/j.ijhydene.2015.01.117

    Article  Google Scholar 

  12. Serra, P. and Espirito-Santo, A.V., in Biologically-Inspired Energy Harvesting Through Wireless Sensor Technologies, Hershey, PA: IGI Global, 2016, pp. 121–171.

    Google Scholar 

  13. Logan, B.E., Microbial Fuel Cells, Hoboken, New York: Wiley, 2007.

    Book  Google Scholar 

  14. McCarty, P.L., Bae, J., and Kim, J., Environ. Sci. Technol., 2011, vol. 45, no. 17, p. 7100. https://doi.org/10.1021/es2014264

    Article  ADS  Google Scholar 

  15. Rozendal, R.A., Hamelers, H.V.M., Rabaey, K., Keller, J., and Buisman, C.J.N., Trends Biotechnol., 2008, vol. 26, no. 8, p. 450. https://doi.org/10.1016/j.tibtech.2008.04.008

    Article  Google Scholar 

  16. You, J., Greenman, J., and Ieropoulos, I., Energies, 2018, vol. 11, no. 9, p. 2377. https://doi.org/10.3390/en11092377

    Article  Google Scholar 

  17. Goglio, A., Tucci, M., Rizzi, B., Colombo, A., Cristiani, P., and Schievano, A., Sci. Total Environ., 2019, vol. 649, p. 1349. https://doi.org/10.1016/j.scitotenv.2018.08.324

    Article  ADS  Google Scholar 

  18. Yamashita, T., Hayashi, T., Iwasaki, H., Awatsu, M., and Yokoyama, H., J. Power Sources, 2019, vol. 430, p. 1. https://doi.org/10.1016/j.jpowsour.2019.04.120

    Article  ADS  Google Scholar 

  19. Espírito-Santo, A., Sérra, P., Albuquerque, S., Ribeiro, B., Santos, F., and Páscoa, J., Proc. 2017 IEEE Int. Workshop on Measurement and Networking (M and N), Naples, 2017. https://doi.org/10.1109/IWMN.2017.8078408

  20. Serra, P.M.D., Esoirito-Santo, A., and Magrinho, M., IECON 201844th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, 2018, vol. 31, no. 1, p. 3847. https://doi.org/10.1109/IECON.2018.8592827

  21. Yang, W., He, W., Zhang, F., Hickner, M.A., and Logan, B.E., Environ. Sci. Technol. Lett., 2014, vol. 1, no. 10, p. 416. https://doi.org/10.1021/ez5002769

    Article  Google Scholar 

  22. Lanas, V. and Logan, B.E., Bioresour. Technol., 2013, vol. 148, p. 379. https://doi.org/10.1016/j.biortech.2013.08.154

    Article  Google Scholar 

  23. Lanas, V., Ahn, Y., and Logan, B.E., J. Power Sources, 2014, vol. 247, p. 228. https://doi.org/10.1016/j.jpowsour.2013.08.110

    Article  ADS  Google Scholar 

  24. Vogl, A., Bischof, F., and Wichern, M., Water Sci. Technol., 2016, vol. 73, no. 8, p. 1769. https://doi.org/10.2166/wst.2016.003

    Article  Google Scholar 

  25. Serra, P.M.D., Espírito-Santo, A., and Magrinho, M., Renewable Sustainable Energy Rev., 2020, vol. 117, p. 109439. https://doi.org/10.1016/j.rser.2019.109439

    Article  Google Scholar 

  26. Do Park, J., Roane, T.M., Ren, Z.J., and Alaraj, M., Appl. Energy, 2017, vol. 193, p. 507. https://doi.org/10.1016/j.apenergy.2017.02.055

    Article  Google Scholar 

  27. Alaraj, M. and Do Park, J., J. Power Sources, 2019, vol. 418, p. 225. https://doi.org/10.1016/j.jpowsour.2019.02.042

    Article  ADS  Google Scholar 

  28. Fan, Y., Hu, H., and Liu, H., Environ. Sci. Technol., 2007, vol. 41, no. 23, p. 8154. https://doi.org/10.1021/es071739c

    Article  ADS  Google Scholar 

  29. Gajda, I., Greenman, J., Melhuish, C., Santoro, C., Li, B., Cristiani, P., and Ieropoulos, I., Sustainable Energy Technol. Assess., 2014, vol. 7, p. 187. https://doi.org/10.1016/j.seta.2014.05.001

    Article  Google Scholar 

  30. Włodarczyk, P.P. and Włodarczyk, B., Catalysts, 2019, vol. 9, no. 7, p. 572. https://doi.org/10.3390/catal9070572

    Article  Google Scholar 

  31. Gajda, I., Greenman, J., Santoro, C., Serov, A., Melhuish, C., Atassanov, P., and Ieropoulos, I., Energy, 2018, vol. 144, p. 1073. https://doi.org/10.1016/j.energy.2017.11.135

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank for their financial support the Portuguese Foundation for Science and Technology (FCT) (Grant ERANETMED/0004/2014), through the ERANETMED initiative of Member States, Associated Countries and Mediterranean Partner Countries (Project ID eranetmed_nexus-14-044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. M. D. Serra, A. Espírito-Santo or M. Magrinho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serra, P.M., Espírito-Santo, A. & Magrinho, M. An Experimental Setup for Microbial Fuel Cells Construction, Evaluation, and Study. Instrum Exp Tech 63, 567–576 (2020). https://doi.org/10.1134/S0020441220040326

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220040326

Navigation