Skip to main content
Log in

A magnetron sputtering device with generation of pulsed beams of high-energy gas atoms

  • Laboratory Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Coating deposition study results are presented a source of joint flow of metal atoms and highenergy gas atoms being used for the deposition. Metal atoms are produced due to sputtering of a flat rectangular target in magnetron discharge. Gas atoms with energies up to 30 keV are produced due to both the acceleration of ions from discharge plasma by high-voltage pulses applied to a grid that is parallel to the target, and ion charge exchange in space-charge sheaths near the grid surface. Metal atoms pass through the grid and are deposited on articles. The coincidence of their trajectories with those of gas atoms that bombard the growing coating allows coatings to be synthesized on dielectric articles that rotate in a chamber. High-energy gas atoms mix the atoms of the coating with the atoms of the article material in its surface layer, thus improving the coating adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grigoriev, S. and Metel, A., Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Boston: Academic, 2004, pp. 147–154.

    Book  Google Scholar 

  2. Metel, A.S., Bolbukov, V.P., Volosova, M.A., Grigoriev, S.N., and Melnik, Yu.A., Instrum. Exp. Tech., 2014, vol. 57, no. 3, p. 345. doi 10.1134/S0020441214020110

    Article  Google Scholar 

  3. Movchan, B.A. and Demchishin, A.V., Fiz. Met. Metalloved., 1969, vol. 28, no. 4, p. 653.

    Google Scholar 

  4. Thornton, J.A., J. Vac. Sci. Technol., 1974, vol. 11, p. 666. doi 10.1116/1.1312732

    Article  ADS  Google Scholar 

  5. Musil, J., Vacuum, 1998, vol. 50, nos. 3–4, p. 363. doi 10.1016/S0042-207X(98)00068-2

    Article  ADS  Google Scholar 

  6. Ruset, C. and Grigore, E., Surf. Coat. Technol., 2002, vol. 156, nos. 1–3, p. 159. doi 10.1016/S0257-8972(02)00121-4

    Article  Google Scholar 

  7. Ruset, C., Grigore, E., Collins, G.A., Short, K.T., Rossi, F., Gibson, N., Dong, H., and Bell, T., Surf. Coat. Technol., 2003, vol. 174/175, p. 698. doi 10.1016/S0257-8972(03)00411-0

    Article  Google Scholar 

  8. Grigore, E., Ruset, C., Short, K.T., Hoeft, D., Dong, H., Li, X.Y., and Bell, T., Surf. Coat. Technol., 2005, vol. 200, nos. 1–4, p. 744. doi 10.1016/j.surfcoat. 2005.02.118

    Article  Google Scholar 

  9. Münz, W.-D., Schulze, D., and Hauzer, F.J.M., Surf. Coat. Technol., 1992, vol. 50, no. 2, p. 169. doi 10.1016/0257-8972(92)90058-I

    Article  Google Scholar 

  10. Metel, A., Surf. Coat. Technol., 2002, vol. 156, nos. 1–3, p. 38. doi 10.1016/S0257-8972(02)00070-1

    Article  Google Scholar 

  11. Kaufman, H.R., Rev. Sci. Instrum., 1990, vol. 61, no. 1, p. 230. doi 10.1063/1.1141883

    Article  ADS  MathSciNet  Google Scholar 

  12. Gavrilov, N.V., Mesyats, G.A., Radkovskii, G.V., and Bersenev, V.V., Surf. Coat. Technol., 1997, vol. 96, no. 1, p. 81. doi 10.1016/S0257-8972(97)00096-0

    Article  Google Scholar 

  13. Metel A.S., Plasma Phys. Rep., 2012, vol. 38, no. 3, p. 254. doi 10.1134/S1063780X12020080

    Article  ADS  Google Scholar 

  14. Metel, A.S., Grigoriev, S.N., Melnik, Yu.A., and Bolbukov, V.P., Instrum. Exp. Tech., 2012, vol. 55, no. 1, p. 122. doi 10.1134/S0020441211060170

    Article  Google Scholar 

  15. Metel, A.S., Melnik, Y.A., and Panin, V.V., Plasma Phys. Rep., 2011, vol. 37, no. 4, p. 357. doi 10.1134/S1063780X11040088

    Article  ADS  Google Scholar 

  16. Cakir, A.F., Metel, A.S., Urgen, M., and Grigoriev, S., Galvanotechnik, 2000, vol. 91, no. 3, p. 768.

    Google Scholar 

  17. Grigoriev, S.N., Melnik, Yu.A., Metel, A.S., Panin, V.V., and Prudnikov, V.V., Instrum. Exp. Tech., 2009, vol. 52, no. 5, p. 731. doi 10.1134/S0020441209050170

    Article  Google Scholar 

  18. Metel, A., Bolbukov, V., Volosova, M., Grigoriev, S., and Melnik, Yu., Surf. Coat. Technol., 2013, vol. 225, p. 34. doi 10.1016/j.surfcoat.2013.03.013

    Article  Google Scholar 

  19. Metel, A.S., Sov. Phys.-Tech. Phys. 1986, vol. 31, p. 1395.

    Google Scholar 

  20. Kaminsky, M., Atomic and Ionic Impact Phenomena on Metal Surfaces, Berlin Springer-Verlag, 1965. doi 10.1007/978-3-642-46025-8

    Book  Google Scholar 

  21. Guseva, M.B., Babaev, V.G., Khvostov, V.V., and Savchenko, N.F., Nanotekhnol.: Razrab. Primen.–XXI Vek, 2010, vol. 2, no. 1, p. 15.

    Google Scholar 

  22. Metel, A.S., Melnik, Yu.A., and Bolbukov, V.P., Vestn. MGTU Stankin, 2015, no. 4, p. 74.

    Google Scholar 

  23. Phelps, A.V., J. Phys. Chem. Ref. Data, 1991, vol. 20, no. 3, p. 557. doi 10.1063/1.555889

    Article  ADS  Google Scholar 

  24. Metel, A.S., Vestn. MGTU Stankin, 2015, no. 3, p. 63.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Metel.

Additional information

Original Russian Text © A.S. Metel, S.N. Grigoriev, M.A. Volosova, Yu.A. Melnik, 2017, published in Pribory i Tekhnika Eksperimenta, 2017, No. 2, pp. 144–151.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metel, A.S., Grigoriev, S.N., Volosova, M.A. et al. A magnetron sputtering device with generation of pulsed beams of high-energy gas atoms. Instrum Exp Tech 60, 290–296 (2017). https://doi.org/10.1134/S0020441217020117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217020117

Navigation