Skip to main content
Log in

Post-arc current measurement based on current transfer characteristic

  • General Experimental Techniques
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

The paper proposes a novel post-arc current measuring equipment (PACME), which is composed of vacuum switch, transfer resistance, protective gap and high-precision current sensor. The principle of the measurement is based on current transfer characteristic between the vacuum switch and transfer resistance. The current-transfer model of the post-arc current measurement is established to gain the characteristic of vacuum arc conductance and the completion time of current transfer influenced by the transfer resistance, current of main circuit and the contacts opening time. The vacuum arc of PACME extinguished just before the main current approach zero while the main current is completely transferred to the transfer resistance. According to the simulation result, the PACME is designed, especially; the transfer resistance is non inductive and over current protection. The post-arc current of vacuum switch with axial magnetic field (AMF) and transverse magnetic field (TMF) contacts was measured in synthetic short-circuit test. The measuring result of post-arc current is accurate and small interference, which satisfied the post-arc current measurement of vacuum circuit breakers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smeets, R.P.P. and Lathouwers, A.G.A., IEEE Trans. Dielect. Electr. Insul., 1999, vol. 6, no. 4, p. 394. doi 10.1109/94.788732

    Article  Google Scholar 

  2. Moll, R. and Schade, E., J. Phys. Colloq., 1979, vol. 40, no. C7, p. 309. doi 10.1051/jphyscol:19797152

    Article  ADS  Google Scholar 

  3. Sugita, M., Igarashi, T., Kasuya, H., Okabe, S., and Matsui, Y., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 8, p. 1438. doi 10.1109/TPS.2009.2015883

    Article  ADS  Google Scholar 

  4. Kaumanns, J., IEEE Trans. Plasma Sci., 1997, vol. 25, no. 4, p. 632. doi 10.1109/27.640676

    Article  ADS  Google Scholar 

  5. Murano, M., Nishikawa, H., Kobayashi, A., and Okazaki, T., IEEE Trans. Power Apparat. Syst., 1975, vol. 94, no. 5, p. 1890. doi 10.1109/T-PAS.1975.32035

    Article  Google Scholar 

  6. Yanabu, S., Homma, M., Kaneko, E., and Tamagawa, T., IEEE Trans. Power Apparat. Syst., 1985, vol. 1, p. 166. doi 10.1109/TPAS.1985.318890

    Article  Google Scholar 

  7. Ide, N., Tanaka, O., Yanabu, S., Kaneko, S., Okabe, S., and Matsui, Y., IEEE Trans. Dielect. Electr. Insul., 2008, vol. 15, no. 4, p. 1065. doi 10.1109/TDEI.2008. 4591229

    Article  Google Scholar 

  8. Mahdavi, J., Schaeffer, A., Velo, C., Bompa, L., and Gatellet, J., IEE Proc–A, 1985, vol. 132, no. 5, p. 285. doi 10.1049/ip-a-1.1985.0063

    Google Scholar 

  9. Damstra, G.C. and Kertesz, V., IEE Proc–A, 1995, vol. 142, no. 2, p. 125. doi 10.1049/ip-smt:19951441

    Google Scholar 

  10. Smeets, R.P.P., Eenink, A.H., and Kertész, V., in Proc. ERA Conf. Measur. Calibr. in and High Voltage Testing, 1998, p. 852. doi 10.1109/TPS.2003.818438

    Google Scholar 

  11. Van Lanen, E.P.A., Delft University of Technology, 2008, pp. 23–72.

    Google Scholar 

  12. Schavemaker, P.H. and Van der Sluis, L., in Proc. 2nd IASTED Int. Conf. Power Energy Syst. (EuroPES), 2002, p. 25.

    Google Scholar 

  13. Kharin, S.N., Nouri, H., and Amft, D., IEEE Trans. Plasma Sci., 2005, vol. 33, no. 5, part 1, p. 1576. doi 10.1109/TPS.2005.856528

    Article  ADS  Google Scholar 

  14. Benilov, M.S. and Cunha, M.D., Phys. Rev. E: Statist., Nonlinear, Soft Matter Phys., 2003, vol. 68, no. 5, p. 056407. doi 10.1103/PhysRevE.68.056407

    Article  ADS  Google Scholar 

  15. Christen, T. and Peinke, E., J. Phys. D: Appl. Phys., 2012, vol. 45, no. 6, p. 065202. doi 10.1088/0022-3727/45/6/065202

    Article  ADS  Google Scholar 

  16. Zhang, J. and Zhang, W., Modern Electron. Techn., 2006, vol. 9, p. 048.

    Google Scholar 

  17. Kotov, Yu.A., Nanotechnologies in Russia, 2009, vol. 4, nos. 7–8, p. 415.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowei Ge.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Ge, G., Huang, J. et al. Post-arc current measurement based on current transfer characteristic. Instrum Exp Tech 60, 78–86 (2017). https://doi.org/10.1134/S0020441217010080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441217010080

Navigation