Skip to main content
Log in

Research on the Vacuum Arc Commutating Characteristic of Resistive Fault Current Limiters

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The paper focuses on the vacuum arc commutating characteristic which is a common basic problem in resistive fault current limiters. The current commutating characteristic of the current can be diverted into the current limiting resistor from the vacuum circuit breaker is mainly researched. The influence of the current amplitude, the current limiting resistor resistance, the arcing time, the transverse magnetic field and the current frequency on the time of the current commutation and the current in the moment of the completion transition is investigated and analyzed. According to the experimental results, the mathematical description of the vacuum arc commutating characteristic is obtained. The interaction between the vacuum arc and the transverse magnetic field is discussed. The paper provides the foundation for the structure and parameters optimization of the resistive fault current limiter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Tan, Y., Yang, K., Xiang, B., Liu, Z., Geng, Y., Wang, J., and Yanabu, S., in Proc. 2015 IEEE Int. Conf. on Electric Power Equipment Switching Technology (ICEPE-ST), Busan, South Korea, 2015.

  2. Yousefi, H., Mirzaie, M., and Aminifar, F., IET Gener. Transm. Distrib., 2016, vol. 10, no. 7, p. 1504.

    Article  Google Scholar 

  3. Hong, H., Su, B., Niu, G.J., Cui, J.B., Tian, B., Li, Q., and Xin, Y., in Proc. 2013 IEEE Int. Conf. on Applied Superconductivity and Electromagnetic Devices (ASEMD), Beijing, China, 2013.

  4. Amon, J., Fernandez, P.C., Rose, E.H., D’ajuz, A., and Castanheira, A., in Proc. 6th Int. Conf. on Power Systems Transients IPST 2005, Montreal, Canada, 2005, paper no. IPST05-215.

  5. Strümpler, R., Skindhøj, J., Glatz-Reichenbach, J., Kuhlefelt, J.H.W., and Perdoncin, F., IEEE Trans. Power Delivery, 1999, vol. 14, no. 2, p. 425.

    Article  Google Scholar 

  6. Abramovitz, A. and Smedley, K.M., IEEE Trans. Power Electron., 2012, vol. 27, no. 6, p. 2770.

    Article  ADS  Google Scholar 

  7. Hyun, O.B., Sim, J., Kim, H.R., Park, K.B., Yim, S.W., and Oh, I.S., IEEE Trans. Appl. Supercond., 2009, vol. 19, no. 3, p. 1843.

    Article  ADS  Google Scholar 

  8. Lee, B.W., Sim, J., Park, K.B., and Oh, I.S., IEEE Trans. Appl. Supercond., 2008, vol. 18, no. 2, p. 620.

    Article  ADS  Google Scholar 

  9. He, H., Rong, M., Wu, Y., Yang, F., Liu, Y., and Man, J., IEEE Trans. Power Delivery, 2013, vol. 28, no. 4, p. 2566.

    Article  Google Scholar 

  10. Pedrow, P.D., Burrage, L.M., and Shohet, J.L., IEEE Trans. Power Appar. Syst., 1983, no. 5, p. 1269.

  11. Pedrow, P.D., Burrage, L.M., and Shohet, J.L., IEEE Trans. Power Appar. Syst., 1981, no. 6, p. 2740.

  12. Emtage, P.R., Kimblin, C.W., Gorman, J.G., and Holmes, F.A., IEEE Trans. Plasma Sci., 1980, vol. 8, no. 4, p. 314.

    Article  ADS  Google Scholar 

  13. Kim, M.J., Choe, W., Bang, S.H., Park, H.Y., Lee, G.H., Sim, J., and Yang, J.K., in Proc. IEEE Int. Conf. on Electric Power Equipment Switching Technology (ICEPE-ST), Matsue, Japan, 2013.

  14. Kim, M.J., Park, K., Ahn, K.Y., Kim, Y.G., and Lim, D.K., in Proc. 2015 IEEE Int. Conf. on Electric Power Equipment Switching Technology (ICEPE-ST), Busan, South Korea, 2015.

  15. Zhao, C., Lu, J.Z., Jiang, Z.L., et al., Adv. Mater. Res., 2010, vol. 139, p. 1839.

    Article  Google Scholar 

  16. Shi, J., Zou, J., and He, J., IEEE Power Eng. Rev., 2000, vol. 20, no. 6, p. 51.

    Google Scholar 

  17. Chen, J.X., Zou, J.Y., Dong, E.Y., and Shi, J., Int. J. Electr. Power Energy Syst., 2002, vol. 24, no. 9, p. 719.

    Article  Google Scholar 

  18. Zou, J., Chen, J., and Dong, E., IEEE Power Eng. Rev., 2002, vol. 22, no. 6, p. 40.

    Google Scholar 

  19. Fisher, L.M., Alferov, D.F., Akhmetgareev, M.R., Budovskii, A.I., Evsin, D.V., and Voloshin, I.F., Phys. At. Nucl., 2015, vol. 78, no. 14, p. 1654.

    Article  Google Scholar 

  20. Prozorov, E.F., Ul’yanov, K.N., and Fedorov, V.A., High Temp., 2014, vol. 52, no. 2, p. 179.

    Article  Google Scholar 

  21. Alferov, D.F. and Londer, Y.I., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 8, p. 1403.

    Article  ADS  Google Scholar 

  22. Alferov, D.F., Belkin, G.S., and Yevsin, D.V., IEEE Trans. Plasma Sci., 2009, vol. 37, no. 8, p. 1433.

    Article  ADS  Google Scholar 

  23. Alferov, D.F., Ivanov, V.P., and Sidorov, V.A., High Temp., 2006, vol. 44, no. 3, p. 342.

    Article  Google Scholar 

  24. Klajn, A., IEEE Trans. Plasma Sci., 1999, vol. 27, no. 4, p. 977.

    Article  ADS  Google Scholar 

  25. Alferov, D.F., Ahmetgareev, M.R., Yevsin, D.V., and Ivanov, V.P., Plasma Physics Rep., 2010, vol. 36, no. 13, p. 1210.

    Article  ADS  Google Scholar 

  26. Meunier, J.L. and Drouet, M.G., IEEE Trans. Plasma Sci., 1983, vol. 11, no. 3, p. 165.

    Article  ADS  Google Scholar 

  27. Alferov, D.F., Ivanov, V.P., and Sidorov, V.A., IEEE Trans. Plasma Sci., 2003, vol. 31, no. 5, p. 918.

    Article  ADS  Google Scholar 

  28. Alferov, D.F., Evsin, D.V., and Ivanov, V.P., High Temp., 2009, vol. 47, no. 4, p. 489.

    Article  Google Scholar 

  29. Wang, Z., He, J., Yin, X., Lu, J., Hui, D., and Zhang, H., Trans.China Electrotech. Soc., 2009, vol. 24, no. 11, p. 68.

    Google Scholar 

  30. Ge, G., Liao, M., Duan, X., Cheng, X., Zhao, Y., and Liu, Z., IEEE Trans. Plasma Sci., 2016, vol. 44, no. 1, p. 79.

    Article  ADS  Google Scholar 

  31. Klajn, A., in Proc. XIXth Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV), Xian, China, 2000.

  32. Liao, M., Ge, G., Duan, X., Su, K., Cheng, X., and Zou, J., in Proc. Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV), Mumbai, India, 2014.

  33. Sauer, T., Numerical Analysis, Boston: Pearson, 2012, 2nd ed.

    MATH  Google Scholar 

  34. Zhi-Yong, Z., Proficient MATALAB 6.5, Beijing: Beijing Univ. Aeronaut. Astronaut., 2003.

    Google Scholar 

  35. Khan, U.A., Lee, J.G., Amir, F., and Lee, B.W., IEEE Trans. Appl. Supercond., 2015, vol. 25, no. 6, p. 1.

    Article  Google Scholar 

  36. Shukla, A. and Demetriades, G.D., IEEE Trans. Power Delivery, 2015, vol. 30, no. 2, p. 627.

    Article  Google Scholar 

Download references

Funding

Project Supported by National Natural Science Foundation of China (51 277 020, 51 477 024, 51 337 001), Fundamental Research Funds for Central Universities (DUT13YQ102, DUT15ZD234).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian Cheng, Guowei Ge, Minfu Liao, Xiongying Duan or Zhihui Huang.

Ethics declarations

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian Cheng, Ge, G., Liao, M. et al. Research on the Vacuum Arc Commutating Characteristic of Resistive Fault Current Limiters. High Temp 57, 628–635 (2019). https://doi.org/10.1134/S0018151X1905002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X1905002X

Navigation