Skip to main content
Log in

Kinetics of Formation and Crystallization of Ln2Ti2O7 (Ln = Gd, Lu) Pyrochlores from Nanoparticulate Precursors

  • Published:
Inorganic Materials Aims and scope

Abstract

The kinetics of formation and crystallization of Ln2Ti2O7 (Ln = Gd, Lu) pyrochlores from nanoparticulate precursors prepared via coprecipitation have been analyzed using X-ray diffraction, Raman spectroscopy, luminescence spectroscopy, scanning electron microscopy, calorimetry (differential scanning calorimetry (DSC)), mass spectrometry, and quantitative thermogravimetry (TG). The results demonstrate that the formation of the pyrochlores proceeds through crystallization of a nanoparticulate fluorite phase. The starting mixtures have been shown to consist in considerable measure of hydroxides and hydroxycarbonates, rather than of oxides. The first synthesis step at temperatures below 550–650°C is decomposition of the starting compounds to titanium oxide and lutetium (or gadolinium) dioxycarbonate. The second step is the synthesis of final compounds, also accompanied by CO2 release. Thus, “high-temperature” CO2 release makes it possible to visualize the synthesis kinetics. Specially designed experiments involving prolonged heat treatment at low temperatures (540 h at 550°C and 216 h at 700°C) have shown that Lu2Ti2O7 can be synthesized almost completely from starting mixtures even at 550°C. The high degree of conversion at 550°C has been confirmed by quantitative TG. Raman and luminescence spectroscopy results demonstrate that the disordered nanooxide synthesized at 550°C, with a crystallite size of 15 Å, has the fluorite structure. Prolonged heat treatment at 700°C was accompanied by an increase in crystallite size and a fluorite-to-pyrochlore phase transition. During heating of the starting precursor at a high rate, 10°C/min (DSC and TG), all of the processes were shifted to higher temperatures. The formation of the final Ln2Ti2O7 (Ln = Gd, Lu) pyrochlores through a nanoparticulate fluorite phase is characteristic of both systems. Thus, all of the Ln2M2O7 (M = Ti, Zr, Hf) 3+/4+ pyrochlores are formed as a result of an order–disorder transition from a nanoparticulate fluorite phase to a pyrochlore phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Anokhina, I.A., Animitsa, I.E., Voronin, V.I., Vykhodets, V.B., Kurennykh, T.E., Molchanova, N.G., Vylkov, A.I., Dedyukhin, A.E., and Zaikov, Y.P., The structure and electrical properties of lithium doped pyrochlore Gd2Zr2O7, Ceram. Int., 2021, vol. 47, no. 2, pp. 1949–1961. https://doi.org/10.1016/j.ceramint.2020.09.025

    Article  CAS  Google Scholar 

  2. Omata, T. and Otsuka-Yao-Matsuo, S., Electrical properties of proton-conducting Ca2+-doped La2Zr2O7 with a pyrochlore-type structure, J. Electrochem. Soc., 2001, vol. 148, no. 6, pp. E252–E261. https://doi.org/10.1149/1.1369370

    Article  CAS  Google Scholar 

  3. Antonova, E.P., Farlenkov, A.S., Tropin, E.S., Eremin, V.A., Khodimchuk, A.V., and Ananiev, M.V., Oxygen isotope exchange, water uptake and electrical conductivity of Ca-doped lanthanum zirconate, Solid State Ionics, 2017, vol. 306, no. 1, pp. 112–117. https://doi.org/10.1016/j.ssi.2017.03.023

    Article  CAS  Google Scholar 

  4. Shlyakhtina, A.V. and Shcherbakova, L.G., Polymorphism and high-temperature conductivity of Ln2M2O7 (Ln = Sm–Lu, M= Ti, Zr, Hf) pyrochlores, Solid State Ionics, 2011, vol. 192, no. 1, pp. 200–204. https://doi.org/10.1016/j.ssi.2010.07.013

    Article  CAS  Google Scholar 

  5. Shlyakhtina, A.V., Morphotropy, isomorphism, and polymorphism of Ln2M2O7-based (Ln = La–Lu, Y, Sc; M = Ti, Zr, Hf, Sn) oxides, Crystallogr. Rep., 2013, vol. 58, no. 4, pp. 548–562. https://doi.org/10.1134/S1063774513020259

    Article  CAS  Google Scholar 

  6. Shlyakhtina, A.V., Pigalskiy, K.S., Belov, D.A., Lyskov, N.V., Kharitonova, E.P., Kolbanev, I.V., Borunova, A.B., Karyagina, O.K., Sadovskaya, E.M., Sadykov, V.A., and Eremeev, N.F., Proton and oxygen ion conductivity in the pyrochlore/fluorite family of Ln2 − xCaxScMO7 − δ (Ln = La, Sm, Ho, Yb; M = Nb, Ta; x = 0, 0.05, 0.1) niobates and tantalates, Dalton Trans., 2018, vol. 47, no. 7, pp. 2376–2392. https://doi.org/10.1039/C7DT03912C

    Article  CAS  PubMed  Google Scholar 

  7. Sadykov, V., Shlyakhtina, A., Lyskov, N., Sadovskaya, E., Cherepanova, S., Eremeev, N., Skazka, V., Goncharov, V., and Kharitonova, E., Oxygen diffusion in Mg-doped Sm and Gd zirconates with pyrochlore structure, Ionics, 2020, vol. 26, no. 1, pp. 4621–4633. https://doi.org/10.1007/s11581-020-03614-5

    Article  CAS  Google Scholar 

  8. Zuniga, J.P., Gupta, S.K., Abdou, M., De Santiago, H.A., Puretzky, A.A., Thomas, M.P., Guiton, B.S., Lui, J., and Mao, Y., Size, structure and luminescence of Nd2Zr2O7 nanoparticles by molten salt synthesis, J. Mater. Sci., 2019, vol. 54, no. 1, pp. 12411–12424. https://doi.org/10.1007/s10853-019-03745-9

    Article  CAS  Google Scholar 

  9. Lu, X., Shu, X., Shao, D., Chen, S., Zhang, H., Yuan, X., and Chi, F., Radiation stability of Gd2Zr2O7 and Nd2Ce2O7 ceramics as nuclear waste forms, Ceram. Int., 2018, vol. 44, no. 1, pp. 760–765. https://doi.org/10.1016/j.ceramint.2017.09.244

    Article  CAS  Google Scholar 

  10. Farmer, J., Boatner, L., Chakoumakos, B., Du, M.-H., Lance, M., Rawn, C., and Bryan, J., Structural and crystal chemical properties of rare-earth titanate pyrochlores, J. Alloys Compd., 2014, vol. 605, no. 1, pp. 63–70. https://doi.org/10.1016/j.jallcom.2014.03.153

    Article  CAS  Google Scholar 

  11. Subramanian, M.A., Aravamudan, G., and Subba Rao, G.V., Oxide pyrochlores. A review, Prog. Solid State Chem., 1983, vol. 15, no. 2, pp. 55–143. https://doi.org/10.1016/0079-6786(83)90001-8

    Article  CAS  Google Scholar 

  12. Wang, Y., Darapaneni, P., Ofoegbuna, T., Gupta, S.K., Kizilkaya, O., Mao, Y., and Dorman, J.A., Effect of oxide ion distribution on a uranium structure in highly U-doped RE2Hf2O7 (RE = La and Gd) nanoparticles, Inorg. Chem., 2020, vol. 59, no. 19, pp. 14070–14077. https://doi.org/10.1021/acs.inorgchem.0c01850

    Article  CAS  PubMed  Google Scholar 

  13. Komissarova, L.N., Shatskii, V.M., Pushkina, G.Ya., Shcherbakova, L.G., Mamsurova, L.G., and Sukhanova, G.E., Soedineniya redkozemel’nykh elementov. Karbonaty, oksalaty, nitraty, titanaty (Rare-Earth Compounds: Carbonates, Oxalates, Nitrates, and Titanates), Moscow: Nauka, 1984.

  14. Popov, V.V., Menushenkov, A.P., Yastrebtsev, A.A., Korovin, S.A., Tumarkin, A.V., Pisarev, A.A., Tsarenko, N.A., Arzhatkina, L.A., and Arzhatkina, O.A., The effect of synthesis conditions on the structure of compounds formed in the Dy2O3–TiO2 system, Russ. J. Inorg. Chem., 2016, vol. 61, no. 4, pp. 403–411. https://doi.org/10.1134/S003602361604015X

    Article  CAS  Google Scholar 

  15. Popov, V.V., Menushenkov, A.P., Gaynanov, B.R., Ivanov, A.A., d’Acapito, F., Puri, A., Shchetinin, I.V., Zheleznyi, M.V., Berdnikova, M.M., Pisarev, A.A., Yastrebtsev, A.A., Tsarenko, N.A., Arzhatkina, L.A., Horozova, O.D., Rachenok, I.G., and Ponkratov, K.V., Formation and evolution of crystal and local structures in nanostructured Ln2Ti2O7 (Ln = Gd–Dy), J. Alloys Compd., 2018, vol. 746, no. 1, pp. 377–390. https://doi.org/10.1016/j.jallcom.2018.02.263

    Article  CAS  Google Scholar 

  16. Popov, V.V., Menushenkov, A.P., Gaynanov, B.R., Ivanov, A.A., Yastrebtsev, A.A., d’Acapito, F., Puri, A., Castro, G.R., Shchetinin, I.V., Zheleznyi, M.V., Zubavichus, Ya.V., and Ponkratov, K.V., Comparative analysis of long- and short-range structures features in titanates Ln2Ti2O7 and zirconates Ln2Zr2O7 (Ln = Gd, Tb, Dy) upon the crystallization process, J. Phys. Chem. Solids, 2019, vol. 130, no. 1, pp. 144–153. https://doi.org/10.1016/j.jpcs.2019.02.019

    Article  CAS  Google Scholar 

  17. Almjasheva, O.V., Formation of oxide nanocrystals and nanocomposites under hydrothermal conditions and the structure and properties of materials based on them, Doctoral (Chem.) Dissertation, St. Petersburg, 2017.

  18. Lin, K.-M., Lin, C.-C., Hsiao, C.-Y., and Li, Y.-Y., Synthesis of Gd2Ti2O7:Eu3+,V4+ phosphors by sol–gel process and its luminescent properties, J. Lumin., 2007, vol. 127, no. 2, pp. 561–567. https://doi.org/10.1016/j.jlumin.2007.03.010

    Article  CAS  Google Scholar 

  19. Kaliyaperumal, C., Sankarakumar, A., and Paramasivam, T., Grain size effect on the electrical properties of nanocrystalline Gd2Zr2O7 ceramics, J. Alloys Compd., 2020, vol. 813, no. 1, p. 152221. https://doi.org/10.1016/j.jallcom.2019.152221

    Article  CAS  Google Scholar 

  20. Huang, Z., Deng, J., Wang, H., Zhang, Y., Duan, J., Tang, Z., Cao, Z., Qi, J., He, D., and Lu, T., Fast low-temperature densification of translucent bulk nanograin Gd2Zr2O7 ceramics with average grain size below 10 nm, J. Alloys Compd., 2020, vol. 830, no. 1, p. 154617. https://doi.org/10.1016/j.jallcom.2020.154617

    Article  CAS  Google Scholar 

  21. Nayak, C., Nigam, S., Pandey, M., Sudarsan, V., Majumder, C., Jha, S.N., Bhatacharyya, D., Vatsa, R.K., and Kshirsagar, R.J., Nano-size effects on the nature of bonding in Y2Sn2O7: EXAFS and Raman spectroscopic investigations, Chem. Phys. Lett., 2014, vol. 597, no. 1, pp. 51–56. https://doi.org/10.1016/j.cplett.2014.02.028

    Article  CAS  Google Scholar 

  22. Chatterjee, R., Chandra Das, G., and Chattopadhyay, K.K., Luminescence properties of nano and bulk ZnWO4:Eu3+ phosphors for solid state lighting applications, Mater. Res. Express, 2020, vol. 7, no. 1, p. 074002. https://doi.org/10.1088/2053-1591/aba0ed

    Article  CAS  Google Scholar 

  23. Moreno, K.J., Fuentes, A.F., Maczka, M., Hanuza, J., and Amador, U.J., Structural manipulation of pyrochlores: thermal evolution of metastable Gd2(Ti(1 – y)Zry)2O7 powders prepared by mechanical milling, Solid State Chem., 2006, vol. 179, no. 12, pp. 3805–3813. https://doi.org/10.1016/j.jssc.2006.08.023

    Article  CAS  Google Scholar 

  24. Glerup, M., Faurskov Nielsen, O., and Poulsen, F.W., The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling, J. Solid State Chem., 2001, vol. 160, no. 1, pp. 25–32. https://doi.org/10.1006/jssc.2000.9142

    Article  CAS  Google Scholar 

  25. Sanjuan, M.L., Guglieri, C., D’ı az-Moreno, S., Aquilanti, G., Fuentes, A.F., Olivi, L., and Chaboy, J., Raman and X-ray absorption spectroscopy study of the phase evolution induced by mechanical milling and thermal treatments in R2Ti2O7 pyrochlores, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 84, no. 1, p. 104207. https://doi.org/10.1103/PhysRevB.84.104207

    Article  CAS  Google Scholar 

  26. Mullens, B.G., Zhang, Z., Avdeev, M., Brand, H.E.A., Cowie, B.C.C., Muzquiz, M.S., and Kennedy, B.J., Effect of long and short-range disorder on the oxygen ionic conductivity of Tm2(Tm2 − xTmx)O7 − x/2 “stuffed” pyrochlores, Inorg. Chem., 2021, vol. 60, no. 7, pp. 4517–4530. https://doi.org/10.1021/acs.inorgchem.0c03363

    Article  CAS  PubMed  Google Scholar 

  27. Popov, V., Menushenkov, A., Yaroslavtsev, A., Zubavichus, Y., Gaynanov, B., Yastrebtsev, A., Leshchev, D., and Chernikov, R., Fluorite–pyrochlore phase transition in nanostructured Ln2Hf2O7 (Ln = La–Lu), J. Alloys Compd., 2016, vol. 689, no. 1, pp. 669–679. https://doi.org/10.1016/j.jallcom.2016.08.019

    Article  CAS  Google Scholar 

  28. Hess, N.J., Begg, B.D., Conradson, S.D., McCready, D.E., Gassman, P.L., and Weber, W.J., Spectroscopic investigations of the structural phase transition in Gd2(Ti1 − yZry)2O7 pyrochlores, J. Phys. Chem. B, 2002, vol. 106, no. 18, pp. 4663–4677. https://doi.org/10.1021/jp014285t

    Article  CAS  Google Scholar 

  29. Weber, W.J. and Ewing, R.C., Plutonium immobilization and radiation effects, Science, 2000, vol. 289, no. 5487, pp. 2051–2052. https://doi.org/10.1126/science.289.5487.2

    Article  CAS  PubMed  Google Scholar 

  30. Sattonnay, G., Moll, S., Thomé, L., Decorse, C., Legros, C., Simon, P., Jagielski, J., Jozwik, I., and Monnet, I., Phase transformations induced by high electronic excitation in ion-irradiated pyrochlores, J. Appl. Phys., 2010, vol. 108, no. 1, p. 103512. https://doi.org/10.1063/1.3503452

    Article  CAS  Google Scholar 

  31. Kreller, C.R., Valdez, J.A., Holesinger, T.G., Morgan, J., Wang, Y., Tang, M., Garzon, F.H., Mukundan, R., Brosha, E.L., and Uberuaga, B.P., Massively enhanced ionic transport in irradiated crystalline pyrochlore, J. Mater. Chem. A, 2019, vol. 7, no. 1, pp. 3917–3923. https://doi.org/10.1039/C8TA10967B

    Article  CAS  Google Scholar 

  32. Li Y.H., Wen J., Wang Y.Q., Wang Z.G., Tang M., Valdez J.A., and Sickafus K.E., The irradiation effects of Gd2Hf2O7 and Gd2Ti2O7, Nucl. Instrum. Methods Phys. Res., Sect. B, 2012, vol. 287, pp. 130–134. https://doi.org/10.1016/j.nimb.2012.06.003

    Article  CAS  Google Scholar 

  33. Martos, M., Julia’n-Lo’pez, B., Cordoncillo, E., and Escribano, P., Structural and spectroscopic study of a novel erbium titanate pink pigment prepared by sol–gel methodology, J. Phys. Chem. B, 2008, vol. 112, no. 8, pp. 2319–2325. https://doi.org/10.1021/jp077369w

    Article  CAS  PubMed  Google Scholar 

  34. Sastry, R.L.N., Yoganarasimhan, S.R., Mehrotra, P.N., and Rao, C.N.R., Preparation, characterization and thermal decomposition of Pr, Tb and Nd-carbonates, J. Inorg. Nucl. Chem., 1966, vol. 28, no. 5, pp. 1165–1177. https://doi.org/10.1016/0022-1902(66)80442-6

    Article  CAS  Google Scholar 

  35. Caro, P. and Lemaitre-Blasé, M., Hydroxycarbonates de terre rare Ln2(CO3)2(OH)2(3 − x)nH2O, C. R. Acad. Sci., 1969, vol. 269, pp. 687–690.

    CAS  Google Scholar 

  36. Aumont, R., Genet, F., Passaret, M., and Toudic, Y., Preparation par voie hydrothermale d’hydroxycarbonates d’elements des terres rares, et des produits correspondants obtenus par substitution de OH par Cl; determination des principaux caracteres cristallographiques, C. R. Acad. Sci., 1971, vol. 272, pp. 314–317.

    CAS  Google Scholar 

  37. Tien, N.A., Mittova, I.Ya., Almjasheva, O.V., Kirillova, S.A., and Gusarov, V.V., Influence of the preparation conditions on the size and morphology of nanocrystalline lanthanum orthoferrite, Glass Phys. Chem., 2008, vol. 34, no. 6, pp. 756–761. https://doi.org/10.1134/s1087659608060138

    Article  CAS  Google Scholar 

  38. Turcotte, R.P., Sawyer, J.O., and Eiring, L.R., On the rare-earth dioxymonocarbonates and their decomposition, Inorg. Chem., 1969, vol. 8, no. 2, pp. 238–246. https://doi.org/10.1021/ic50072a012

    Article  CAS  Google Scholar 

  39. Shlyakhtina, A.V., Vorobieva, G.A., Shchegolikhin, A.N., Leonov, A.V., Kolbanev, I.V., and Streletskii, A.N., Phase relations and behavior of carbon-containing impurities in ceramics prepared from mechanically activated Ln2O3 + 2HfO2 (Ln = Nd, Dy) mixtures, Inorg. Mater., 2020, vol. 56, no. 5, pp. 528–542. https://doi.org/10.1134/S002016852005012X

    Article  CAS  Google Scholar 

  40. Mamsurova, L.G., Shabatin, V.P., Shlyakhtina, A.V., and Shcherbakova, L.G., Cryochemical synthesis of rare-earth titanates, Izv. Akad. Nauk SSSR, Neorg. Mater., 1989, vol. 25, pp. 637–641.

    CAS  Google Scholar 

  41. Mirkin, L.I., Spravochnik po rentgenostrukturnomu analizu polikristallov (X-Ray Structure Analysis of Polycrystals: A Handbook), Umanskii, Ya.S., Ed., Moscow: Fizmatlit, 1961.

    Google Scholar 

  42. Escolástico, S., Vert, V.B., and Serra, J.M., Preparation and characterization of nanocrystalline mixed proton–electronic conducting materials based on the system Ln 6WO12, Chem. Mater., 2009, vol. 21, no. 14, pp. 3079–3089. https://doi.org/10.1021/cm900067k

    Article  CAS  Google Scholar 

  43. Shlyakhtina, A.V., Shcherbakova, L.G., Knotko, A.V., and Steblevskii, A.V., Study of the fluorite–pyrochlore–fluorite phase transitions in Ln2Ti2O7 (Ln = Lu, Yb, Tm), J. Solid State Electrochem., 2004, vol. 8, no. 1, pp. 661–667. https://doi.org/10.1007/s10008-003-0491-8

    Article  CAS  Google Scholar 

  44. Ćulubrk, S., Antić, Ž., Marinović-Cincović, M., Ahrenkiel, P.S., and Dramićanin, M.D., Synthesis and luminescent properties of rare earth (Sm3+ and Eu3+) doped Gd2Ti2O7 pyrochlore nanopowders, Opt. Mater., 2014, vol. 37, no. 1, pp. 598–606. https://doi.org/10.1016/j.optmat.2014.08.001

    Article  CAS  Google Scholar 

  45. Gupta, S.K., Abdou, M., Ghosh, P.S., Zuniga, J.P., and Mao, Y., Thermally induced disorder–order phase transition of Gd2Hf2O7:Eu3+ nanoparticles and its implication on photo- and radioluminescence, ACS Omega, 2019, vol. 4, no. 1, pp. 2779–2791. https://doi.org/10.1021/acsomega.8b03458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lyskov, N.V., Shchegolikhin, A.N., Stolbov, D.N., Kolbanev, I.V., Gomes, E., Abrantes, J.C.C., and Shlyakhtina, A.V., Study of oxygen-ion conductivity and luminescence in the ZrO2–Nd2O3 system: impact of local heterogeneity, Electrochim. Acta, 2022, vol. 403, no. 1, p. 139632. https://doi.org/ ZrO2–Nd2O3

  47. You, J., Ma, L., Qu, Y., Li, R., Liu, X., and Guo, R., UC/DC luminescence of Ho3+ doped pyrochlore structured La2(1–x)Yb2xTiO5 phosphor synthesized by sol–gel method, J. Rare Earths, 2016, vol. 34, no. 3, pp. 235–239. https://doi.org/10.1016/S1002-0721(16)60019-4

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences (nos. 122040500071-0 and 122040500068-0).

Author information

Authors and Affiliations

Authors

Contributions

A.V. Shlyakhtina, G.A. Vorobieva, and A.N. Streletskii conceived and designed the experiments, synthesized the samples, and characterized them by differential scanning calorimetry, thermogravimetry, and mass spectrometry. A.V. Leonov, A. N. Shchegolikhin, and E.D. Baldin studied the structure of the ceramics by X-ray diffraction and Raman spectroscopy. S.A. Chernyak examined the nanoparticulate samples by scanning electron microscopy. A.V. Shlyakhtina and A.N. Streletskii wrote the paper. All of the authors discussed the results.

Corresponding author

Correspondence to A. V. Shlyakhtina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyakhtina, A.V., Vorobieva, G.A., Leonov, A.V. et al. Kinetics of Formation and Crystallization of Ln2Ti2O7 (Ln = Gd, Lu) Pyrochlores from Nanoparticulate Precursors. Inorg Mater 58, 964–982 (2022). https://doi.org/10.1134/S0020168522090126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522090126

Keywords:

Navigation