Skip to main content
Log in

Synthesis and Thermodynamic Properties of the Ln2CrTaO7 (Ln = Sm, Gd, Y) Pyrochlores

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ln2CrTaO7 (Ln = Sm, Gd, Y) pyrochlores are synthesized by the co-precipitation with subsequent annealing. The effect of the precursor composition ((NH4)2Cr2O7, Cr(NO3)3, and CrCl3) on the precipitates reactivity and product microstructure was studied. Samples with an average particle size of 200 nm for Y2CrTaO7, 450 nm for Gd2CrTaO7 and 600 nm for Sm2CrTaO7 were used to study thermodynamic properties. The temperature dependences of heat capacity were measured by the adiabatic calorimetry (13–346.16 K) method and the ratio method using DSC measurements (330–1300 K). The thermodynamic functions of Ln2CrTaO7 compounds were calculated. The absence of polymorphic transitions up to a temperature of 1450°C for all studied compounds is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C. K. Hao, H. E. Hung, and C. S. Lee, Sol-Gel Sci. Technol. 76, 428 (2015). https://doi.org/10.1007/s10971-015-3791-4

    Article  CAS  Google Scholar 

  2. B. J. Wuensch, K. W. Eberman, C. Heremans et al., Solid State Ion. 129, 111 (2000). https://doi.org/10.1016/S0167-2738(99)00320-3

    Article  CAS  Google Scholar 

  3. M. Sun and B. Huang, Inorg. Chem. 56, 7975 (2017). https://doi.org/10.1021/acs.inorgchem.7b00683

    Article  CAS  PubMed  Google Scholar 

  4. S. H. Oh, R. Black, E. Pomerantseva, et al., Nat. Chem. 4, 1004 (2012). https://doi.org/10.1038/nchem.1499

    Article  CAS  PubMed  Google Scholar 

  5. Y. Liu, R. L. Withers, H. Chen, et al., Curr. Appl. Phys. 11, 171 (2011). https://doi.org/10.1016/j.cap.2011.03.014

    Article  CAS  Google Scholar 

  6. J. P. Luan, X. P. Hao, S. R. Zheng, et al., J. Mater. Sci. 41, 8001 (2006). https://doi.org/10.1007/s10853-006-0869-y

    Article  CAS  Google Scholar 

  7. Z. Zou, J. Ye, and H. Arakawa, Int. J. Hydrogen Energy 28, 663 (2003). https://doi.org/10.1016/S0360-3199(02)00159-3

    Article  CAS  Google Scholar 

  8. K. L. Rosas-Barrera, J. L. Ropero-Vega, J. A. Pedraza-Avella, et al., Catal. Today. 166, 135 (2011). https://doi.org/10.1016/j.cattod.2010.08.008

    Article  CAS  Google Scholar 

  9. O. G. Ellert, A. V. Egorysheva, E. Y. Liberman, et al., Inorg. Mater. 55, 1257 (2019). https://doi.org/10.1134/S0020168519120033

    Article  CAS  Google Scholar 

  10. Z. G. Lu, J. W. Wang, Y. G. Tang, et al., J. Solid State Chem. 177, 3075 (2004). https://doi.org/10.1016/j.jssc.2004.04.053

    Article  CAS  Google Scholar 

  11. S. K. Gupta, J. P. Zuniga, M. Abdou, et al., Inorg. Chem. Front. 7, 505 (2020). https://doi.org/10.1039/C9QI01181A

    Article  CAS  Google Scholar 

  12. R. S. Pavlov, J. B. C. Castello, V. B. Marza, et al., J. Am. Ceram. Soc. 85, 1197 (2002). https://doi.org/10.1039/B201802K

    Article  CAS  Google Scholar 

  13. V. D. Risovany, A. V. Zakharov, E. M. Muraleva, et al., J. Nucl. Mater. 355, 163 (2006). https://doi.org/10.1016/j.jnucmat.2006.05.029

    Article  CAS  Google Scholar 

  14. R. C. Ewing and W. J. Weber, and J. Lian, J. Appl. Phys. 95, 5949 (2004). https://doi.org/10.1063/1.1707213

    Article  CAS  Google Scholar 

  15. K. E. Sickafus, R. W. Grimes, J. A. Valdez, et al., Nature Mater. 6, 216 (2007). https://doi.org/10.1038/nmat1842

    Article  CAS  Google Scholar 

  16. J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010). https://doi.org/10.1103/revmodphys.82.53

    Article  CAS  Google Scholar 

  17. A. V. Egorysheva, O. G. Ellert, D. I. Kirdyankin, et al., J. Magn. Magn. Mater. 513, 167226 (2020). https://doi.org/10.1016/j.jmmm.2020.167226

    Article  CAS  Google Scholar 

  18. X. Wan, A. M. Turner, A. Vishwanath, et al., Phys. Rev. B. 83, 205101 (2011). https://doi.org/10.1103/PhysRevB.83.205101

    Article  CAS  Google Scholar 

  19. M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018). https://doi.org/10.1103/PhysRevLett.120.026801

    Article  CAS  PubMed  Google Scholar 

  20. M. A. Subramanian, G. Aravamudan, and G. V. Subba Rao, Prog. Solid State Chem. 15, 55 (1983). https://doi.org/10.1016/0079-6786(83)90001-8

    Article  CAS  Google Scholar 

  21. W. Pan, Q. Xu, L. H. Qi, et al., Key. Eng. Mater. 280, 1497 (2005). https://doi.org/10.4028/www.scientific.net/KEM.280-283.1497

    Article  Google Scholar 

  22. N. P. Simonenko, K. A. Sakharov, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 60, 1452 (2015). https://doi.org/10.1134/S0036023615120232

    Article  CAS  Google Scholar 

  23. M. P. Schmitt, A. K. Rai, R. Bhattacharya, et al., Surf. Coat. Technol. 251, 56 (2014). https://doi.org/10.1016/j.surfcoat.2014.03.049

    Article  CAS  Google Scholar 

  24. R. Vasser, X. Q. Cao, F. Tietz,et al., J. Am. Ceram. Soc. 83, 3031 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01506.x

    Article  Google Scholar 

  25. J. Wu, X. Wei, N. P. Padture, et al., J. Am. Ceram. Soc. 85, 3031 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00574.x

    Article  CAS  Google Scholar 

  26. J. Xiang, S. Chen, J. Huang, et al., Ceram. Intern. 38, 3607 (2012). https://doi.org/10.1016/j.ceramint.2011.12.077

    Article  CAS  Google Scholar 

  27. L. Chen, M. Hu, P. Wu, et al., J. Am. Ceram. Soc. 102, 4809 (2019). https://doi.org/10.1111/jace.16328

    Article  CAS  Google Scholar 

  28. M. Nyman, M. A. Rodriguez, and L. E. S. Rohwer, Chem. Mater. 21, 4731 (2009). https://doi.org/10.1021/cm9020645

    Article  CAS  Google Scholar 

  29. S. Shu, Y. Wang, Y. Ke, et al., J. Alloys Compd. 848, 156359 (2020). https://doi.org/10.1016/j.jallcom.2020.156359

    Article  CAS  Google Scholar 

  30. R. Dou, Q. Zhang, J. Gao, et al., Crystals 8, 55 (2018). https://doi.org/10.3390/cryst8020055

    Article  CAS  Google Scholar 

  31. L. Chen, Y. Jiang, X. Chong, et al., J. Am. Ceram. Soc. 101, 1266 (2018). https://doi.org/10.1111/jace.15268

    Article  CAS  Google Scholar 

  32. J. Wang, X. Chong, R. Zhou, et al., Scripta Mater. 126, 24 (2017). https://doi.org/10.1016/j.scriptamat.2016.08.019

    Article  CAS  Google Scholar 

  33. Y. Haipeng, C. Xiaoge, Z. Hongsong, et al., Cogent Physics 3, 1244244 (2016). https://doi.org/10.1080/23311940.2016.1244244

    Article  CAS  Google Scholar 

  34. T. An, L. Guofang, C. Zhen, et al., Ceram. Int. 44, 19160 (2018). https://doi.org/10.1016/j.ceramint.2018.06.229

    Article  CAS  Google Scholar 

  35. J. Yang, Y. Han, M. Shahid, et al., Scripta Mater. 149, 49 (2018). https://doi.org/10.1016/j.scriptamat.2018.02.005

    Article  CAS  Google Scholar 

  36. Q. Zheng, L. Chen, P. Song, et al., J. Alloys Comp. 855 157408 (2021). https://doi.org/10.1016/j.jallcom.2020.157408

    Article  CAS  Google Scholar 

  37. A. V. Egorysheva, E. F. Popova, A. V. Tyurin, et al., Russ. J. Inorg. Chem. 64, 1342 (2019). https://doi.org/10.1134/S0036023619110056

    Article  CAS  Google Scholar 

  38. M. E. Wieser, Pure Appl. Chem. 78, 2051 (2006). https://doi.org/10.1351/pac2006781112051

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The investigations were carried out using the facilities of the Center for Collective Use of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

This study was financially supported by the Russian Science Foundation (project no. 18-13-00025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Egorysheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorysheva, A.V., Popova, E.F., Tyurin, A.V. et al. Synthesis and Thermodynamic Properties of the Ln2CrTaO7 (Ln = Sm, Gd, Y) Pyrochlores. Russ. J. Inorg. Chem. 66, 1649–1659 (2021). https://doi.org/10.1134/S003602362111005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362111005X

Keywords:

Navigation