Skip to main content
Log in

Influence of calcination on the sol–gel synthesis of lanthanum oxide nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Abstract

A facile sol–gel technique was employed to synthesize lanthanum oxide nanoparticles (hereafter La2O3 NPs) using micro-sized La2O3 powders, 20% nitric acid, and high-molecular weight polyethylene glycol (PEG) as raw materials. The synthesized La2O3 NPs were calcined at 750, 900, and 1000 °C in air for 2 h. The calcined products were characterised using numerous experimental techniques, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and photoluminescence (PL) spectroscopy. The experimental results indicated that the calcination temperatures have remarkable effects on the crystallinity, particle size, and lattice strains of the La2O3 NPs. The XRD patterns confirmed the hexagonal phase of the La2O3 NPs with lattice constants: a = b = 0.3973, nm and c = 0.6129 nm. The average crystallite size of the La2O3 NPs estimated by electron miscroscopy was in good agreement with the XRD results. The degree of crystallinity, and the average crystallite size of the NPs were increased, while the lattice strains were decreased with the calcination temperatures. The photoluminescence spectra of nanoparticles illustrated a strong emission band at the vicinity of 364 nm, which is typically known to be the green band for La2O3 NPs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Huang, J. Li, S. Zhang, C. Chen, Y. Han, N. Liu, Y. Xiao, H. Wang, M. Zhang, Q. Yu, Y. Liu, W. Wang, Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: Accumulation and oxidative damage. Environ. Toxicol. Pharmacol. 31, 25–32 (2011)

    Article  Google Scholar 

  2. Z.K. Bolaghi, S.M. Masoudpanah, M. Hasheminiasari, Photocatalytic properties of ZnO powders synthesized by conventional and microwave-assisted solution combustion method. J. Sol-Gel. Sci. Technol. 86, 711–718 (2018)

    Article  Google Scholar 

  3. M.H. Oghaz, R.S. Razavi, M. Barekat, M. Naderi, S. Malekzadeh, M. Rezazadeh, Synthesis and characterization of Y2O3 nanoparticles by sol–gel process for transparent ceramics applications. J. Sol-Gel. Sci. Technol. 78, 682–691 (2016)

    Article  Google Scholar 

  4. Y. Xin, Y. Qi, X. Ma, Z. Wang, Z. Zhang, S. Zhang, Rare-earth (Nd, Sm, Eu, Gd and Y) enhanced CeO2 solid solution nanorods prepared by co-precipitation without surfactants. Mater. Lett. 64, 2659–2662 (2010)

    Article  Google Scholar 

  5. G. Oskam, Metal oxide nanoparticles: synthesis, characterization and application. J. Sol-Gel Sci Techn. 37, 161–164 (2006)

    Article  Google Scholar 

  6. A.H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application, Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  7. J. Das, V.S. Moholkar, S. Chakma, Structural, magnetic and optical properties of sonochemically synthesized Zr-ferrite nanoparticles. Powder Technol. 328, 1–6 (2018)

    Article  Google Scholar 

  8. C. Aubery, C. Solans, S. Prevost, M. Gradzielski, M. Sanchez-Dominguez, Microemulsions as reaction media for the synthesis of mixed oxide nanoparticles: Relationships between microemulsion structure, reactivity, and nanoparticle characteristics. Langmuir 29, 1779–1789 (2013)

    Article  Google Scholar 

  9. N.C. Zheng, Z. Wang, J.Y. Long, L.J. Kong, D.Y. Chen, Z.Q. Liu, Shape-dependent adsorption of CeO2 nanostructures for superior organic dye removal. J. Colloid Interface Sci. 525, 225–233 (2018)

    Article  ADS  Google Scholar 

  10. H. Abdulhamid, E. Fridell, M. Skoglundh, Influence of the type of reducing agent (H2, CO, C3 H6 and C3 H8) on the reduction of stored NOX in a Pt/BaO/Al2O3 model catalyst, 2010:161–168 (2004 )

  11. S.F. Hasany, I. Ahmed, A. Rehman, Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci. Nanotechnol. 2, 148–158 (2012)

    Article  Google Scholar 

  12. E.K. Goharshadi, S.H. Sajjadi, R. Mehrkhah, P. Nancarrow, Sonochemical synthesis and measurement of optical properties of zinc sulfide quantum dots. Chem. Eng. J. 209, 113–117 (2012)

    Article  Google Scholar 

  13. E.K. Goharshadi, H. Azizi-Toupkanloo, Silver colloid nanoparticles: ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol. 237, 97–101 (2013)

    Article  Google Scholar 

  14. Y. Gao, Y. Masuda, K. Koumoto, Micropatterning of lanthanum-based oxide thin film on self-assembled monolayers. J. Colloid Interface Sci. 274, 392–397 (2004)

    Article  ADS  Google Scholar 

  15. L. Zhang, L. Zhou, Q.X. Li, H. Liang, H. Qin, S. Masutani, B. Yoza, Toxicity of lanthanum oxide nanoparticles to the fungus Moniliella wahieum Y12T isolated from biodiesel. Chemosphere 199, 495–501 (2018)

    Article  ADS  Google Scholar 

  16. J. Kang, Y. Kim, D.W. Cho, Y. Sohn, Synthesis and physicochemical properties of La(OH)3 and La2O3 nanostructures. Mater. Sci. Semicon. Proces. 40, 737–743 (2015)

    Article  Google Scholar 

  17. S. Khanjani, A. Morsali, Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nanostructured supramolecular compound. J. Mol. Liq. 153, 129–132 (2010)

    Article  Google Scholar 

  18. J. Liu, G. Wang, L. Lu, Y. Guo, L. Yang, Facile shape-controlled synthesis of lanthanum oxide with different hierarchical micro/nanostructures for antibacterial activity based on phosphate removal. RSC Adv. 7, 40965–40972 (2017)

    Article  Google Scholar 

  19. C.C. Li, M.J. Li, Y.P. Huang, Dispersion of aluminum-doped zinc oxide nanopowder with high solid content in ethylene glycol. Powder Technol. 327, 1–8 (2018)

    Article  ADS  Google Scholar 

  20. A.V. Murugan, S.C. Navale, V. Ravi, Synthesis of nanocrystalline La2O3 powder at 100 °C. Mater. Lett. 60, 848–849 (2006)

    Article  Google Scholar 

  21. A. Bahari, A. Anasari, Z. Rahmani, Low temperature synthesis of La2O3 and CrO2 by Sol—Gel process. J. Engi. Technol. Res. 3, 203–208 (2011)

    Google Scholar 

  22. S. Jafari Nejad, H. Abolghasemi, M.A. Moosavian, A. Golzary, M.G. Maragheh, Fractional factorial design for the optimization of hydrothermal synthesis of lanthanum oxide nanoparticles under supercritical water condition. J. Supercrit. Fluids 52, 292–297 (2010)

    Article  Google Scholar 

  23. J. Sheng, S. Zhang, S. Lv, W. Sun, Surfactant-assisted synthesis and characterization of lanthanum oxide nanostructures. J. Mater. Sci. 42, 9565–9571 (2007)

    Article  ADS  Google Scholar 

  24. M. Salavati-Niasari, G. Hosseinzadeh, F. Davar, Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 509, 4098–4103 (2011)

    Article  Google Scholar 

  25. M. Ranjbar, M. Yousefi, Synthesis and characterization of lanthanum oxide nanoparticles from thermolysis of nano-sized lanthanum(III) supramolecule as a novel precursor. J. Inorg. Organomet. Polym Mater. 24, 652–655 (2014)

    Article  Google Scholar 

  26. S. Wang, Y. Zhao, J.Chen,R. Xu, L. Luo, S. Zhong, Self-assembled 3D La(OH)3 and La2O3 nanostructures: fast microwave synthesis and characterization. Superlattices Microstruct. 47, 597–605 (2010)

    Article  ADS  Google Scholar 

  27. B. Tang, J. Ge, C. Wu, L. Zhuo, J. Niu, Z. Chen, Z. Shi, Y. Dong, Sol–solvothermal synthesis and microwave evolution of La(OH)3 nanorods to La2O3 nanorods This. Nanotechnol. 15, 1273–1276 (2004)

    Article  ADS  Google Scholar 

  28. M.F. Vignolo, S. Duhalde, M. Bormioli, G. Quintana, Structural and electrical properties of lanthanum oxide thin films deposited by laser ablation. Appl. Surf. Sci. 197, 522–526 (2002)

    Article  ADS  Google Scholar 

  29. M. Ghiasi, A. Malekzadeh, Synthesis, characterization and photocatalytic properties of lanthanum oxy-carbonate, lanthanum oxide and lanthanum hydroxide nanoparticles. Superlattices Microstruct. 77, 295–304 (2015)

    Article  ADS  Google Scholar 

  30. Q.L. Zhang, Z.J. Ji, J. Zhou, X.C. Zhao, X.Z. Lan, Preparation of lanthanum oxide nanoparticles by chemical precipitation method. Mater. Sci. Forum 724, 233–236 (2012)

    Article  Google Scholar 

  31. M.A. Farrukh, F. Imran, S. Ali, M.K. Rahmanand, I.I. Naqvi, Micelle assisted synthesis of La2O3 nanoparticles and their applications in photodegradation of bromophenol blue. Russian J. Appl. Chem. 88, 1523–1527 (2015)

    Article  Google Scholar 

  32. C. Wang, Y. Yang, Z. Zhang, F. Liao, J. Ju, Z. Shi, J. Lin, Y. Li, F. Huang, Synthesis of nano-structured La2O3/La2O2CO3:Eu phosphors from arc-discharged graphene-contained composites. Mater. Lett. 134, 176–179 (2014)

    Article  Google Scholar 

  33. Y. Xiao, Z. Feng, X. Huang, L. Huang, Z. Long, Q. Wang, Y. Hou, Synthesis of lanthanum oxide nanosheets by a green carbonation process. Chin. Sci. Bull. 59, 1864–1867 (2014)

    Article  Google Scholar 

  34. M. Moothedan, K.B. Sherly, Synthesis, characterization and sorption studies of nano lanthanum oxide. J. Water Process Engi. 9, 29–37 (2016)

    Article  Google Scholar 

  35. E.K. Goharshadi, T. Mahvelati, M. Yazdanbakhsh, Influence of preparation methods of microwave, sol–gel, and hydrothermal on structural and optical properties of lanthania nanoparticles. J. Iran. Chem. Soc. 13, 65–72 (2016)

    Article  Google Scholar 

  36. X. Wang, M. Wang, H. Song, B. Ding, A simple sol-gel technique for preparing lanthanum oxide nanopowders. Mater. Lett. 60, 2261–2265 (2006)

    Article  Google Scholar 

  37. M.S. Niasaria, G. Hosseinzadeh, F. Davar, Synthesis of lanthanum carbonate nanoparticles via sonochemical method for preparation of lanthanum hydroxide and lanthanum oxide nanoparticles. J. Alloys Compd. 509, 134–140 (2011)

    Article  Google Scholar 

  38. Q. Zhou, H. Zhang, F. Chang, H. Li, H. Pan, W. Xue, D.Y. Hu, S. Yang, Nano La2O3 as a heterogeneous catalyst for biodiesel synthesis by transesterification of Jatropha curcas L. oil. J. Indust. Eng. Chem. 31, 385–392 (2015)

    Article  Google Scholar 

  39. H. Kabir, S.H. Nandyala, M.M. Rahman, M.A. Kabir, Z. Pikramenou, M. Laver, A. Stamboulis, Polyethylene glycol assisted facile sol-gel synthesis of lanthanum oxide nanoparticles: Structural characterizations and photoluminescence studies. Ceram. Int. 45, 424–431 (2019)

    Article  Google Scholar 

  40. G.Z. Jia, Y.F. Wang, J.H. Yao, Fabrication and strain investigation of ZnO nanorods on Si composing sol-gel and chemical bath deposition method. J. Phys. Chem. Solids 73, 495–498 (2012)

    Article  ADS  Google Scholar 

  41. C. Hu, H. Liu, W. Dong, Y. Zhang, G. Bao, C. Lao, Z.L. Wang, La(OH)3 and La2O3 nanobelts—synthesis and physical properties. Adv. Mater 19, 470–474 (2007)

    Article  Google Scholar 

  42. B.D. Cullity, Elements of X-ray diffraction, Second edn. (Addison-Wesley Company, Boston, 1978)

    Google Scholar 

  43. R. Jenkins, R.L. Snyder, Chemical Analysis: Introduction to ray Powder Diffractometry (Wiley, New York, 1996)

    Book  Google Scholar 

  44. R. John, R. Rajakumari, Synthesis and characterization of rare earth ion doped nano ZnO. Nano-Micro Lett 4, 65–72 (2012)

    Article  Google Scholar 

  45. F. Ozutok, B. Demirselcuk, E. Sarica, S. Turkyilmaz, V. Bilgin, Study of ultrasonically sprayed ZnO films: thermal annealing effect. Acta Phys. Polonica. A 121, 53–55 (2012)

    Article  Google Scholar 

  46. D. Dickson, G. Liu, C. Li, G. Tachiev, Y. Cai, Dispersion and stability of bare hematite nanoparticles: Effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci. Total Environ. 419, 170–177 (2012)

    Article  ADS  Google Scholar 

  47. N. Zhang, R. Yi, L. Zhou, G. Gao, R. Shi, G. Qiu, X. Liu, Lanthanide hydroxide nanorods and their thermal decomposition to lanthanide oxide nanorods. Mater. Chem. Phys. 114, 160–167 (2009)

    Article  ADS  Google Scholar 

  48. G. Wang, Y. Zhou, D.G. Evans, Y. Lin, Preparation of highly dispersed nano-La2O3 particles using modified carbon black as an agglomeration inhibitor. Ind. Eng. Chem. Res. 51, 14692–14699 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The author (H. Kabir) acknowledges gratefully the financial support of Bangladesh Government under the Bangabandhu Fellowship. He also would like to thank Jahangirnagar University, Bangladesh, for providing the required study leave to carry out this work at the Biomaterials Group in the School of Metallurgy and Materials, University of Birmingham, UK. M Mahbubur is also grateful to Jahangirnagar University and Murdoch University for providing logistic supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Humayun Kabir or Artemis Stamboulis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2609 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabir, H., Nandyala, S.H., Rahman, M.M. et al. Influence of calcination on the sol–gel synthesis of lanthanum oxide nanoparticles. Appl. Phys. A 124, 820 (2018). https://doi.org/10.1007/s00339-018-2246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2246-5

Navigation