Skip to main content
Log in

Thermodynamic Functions of Complex Zirconia Based Lanthanide Oxides—Pyrochlores Ln2Zr2O7 (Ln = La, Pr, Sm, Eu, Gd) and Fluorites Ln2O3 · 2ZrO2 (Ln = Tb, Ho, Er, Tm)

  • PHYSICAL METHODS OF INVESTIGATION
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The review of the thermodynamic properties of complex lanthanide–zirconium oxides, namely, Ln2Zr2O7 (Ln = La, Pr, Sm, Eu, Gd) with a pyrochlore structure and Ln2O3 · 2ZrO2 solid solutions (Ln = Tb, Ho, Er, Tm) with a fluorite structure, is presented on the basis of our and literature data. The heat capacity was experimentally studied for Ln2Zr2O7 (for the cerium subgroup lanthanides) with a pyrochlore structure (Fd3m) and Ln2O3 · 2ZrO2 (for the yttrium subgroup lanthanides) with a fluorite structure (Fm3m), which were characterized by X-ray diffraction and elemental analyses, scanning electron microscopy, and adiabatic and differential scanning calorimetry. The temperature dependences of the thermodynamic functions (entropy, enthalpy change, and reduced Gibbs energy) were calculated within a broad range of temperatures from smoothed heat capacity values. The available thermodynamic data were compared, and some recommended values were given. The contribution of low-temperature magnetic transitions was taken into account for Ln2Zr2O7 (Ln = Pr, Nd, Sm, Gd). The effect of the Schottky anomaly on the heat capacity of lanthanide compounds was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. W. Fergus, Met. Mater. Trans. E 1, 118 (2014).

    CAS  Google Scholar 

  2. J. Wu, X. Wei, N. P. Padture, et al., J. Am. Ceram. Soc. 85, 3031 (2002).

    Article  CAS  Google Scholar 

  3. H. Zhang, K. Sun, Q. Xu, et al., J. Rare Earths 27, 222 (2009).

    Article  Google Scholar 

  4. J. Wang, W. Pan, Q. Xu, et al., Key Eng. Mater. 280–283, 1503 (2005).

  5. Y. Qin, J. Wang, W. Pan, et al., Key Eng. Mater. 336338, 1764 (2007).

  6. J. M. Sohn and S. I. Woo, Catalys. Lett. 79, 45 (2002).

    Article  CAS  Google Scholar 

  7. R. Zhang, Q. Xu, W. Pan, et al., Key Eng. Mater. 336–338, 420 (2007).

  8. A. V. Shlyakhtina and L. G. Shcherbakova, Russ. J. Electrochem. 48, 1 (2012).

    Article  CAS  Google Scholar 

  9. A. V. Shlyakhtina, I. V. Kolbanev, A. V. Khotko, et al., Inorg. Mater. 41, 975 (2005).

    Google Scholar 

  10. R. A. McCauley and F. A. Hummel, J. Lumin. 6, 105 (1973).

    Article  CAS  Google Scholar 

  11. H. L. Tuller, J. Phys. Chem. Solids 55, 1393 (1994).

    Article  CAS  Google Scholar 

  12. Arsen’ev, P.A., Glushkova, V.B., et al., Rare-Earth Compounds: Zirconates, Hafnates, Niobates, Tantalates, and Antimonates (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  13. M. J. D. Rushton, R. W. Grimes, C. R. Stanek, et al., J. Mater. Res. 19, 1603 (2004).

    Article  CAS  Google Scholar 

  14. P. E. R. Blanchard, R. Clements, B. J. Kennedy, et al., Inorg. Chem. 51, 13237 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. C.-W. Chiu, Y.-H. Lee, H.-S. Sheu, et al., J. Chinese Chem. Soc. 57, 925 (2010).

    Article  CAS  Google Scholar 

  16. J. Leither, P. Vonka, D. Sedmidubsky, et al., Thermochim. Acta 497, 7 (2010).

    Article  CAS  Google Scholar 

  17. E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008).

    Article  CAS  Google Scholar 

  18. P. G. Gagarin, A. V. Tyurin, V. N. Guskov, et al., Inorg. Mater. 53, 64 (2017).

    Google Scholar 

  19. V. V. Popov, V. F. Petrunin, S. A. Korovin, et al., Russ. J. Inorg. Chem. 56, 1538 (2011).

    Article  CAS  Google Scholar 

  20. V. V. Popov, Ya. V. Zubavichus, A. P. Menushenkov, et al., Russ. J. Inorg. Chem. 59, 279 (2014).

    Article  CAS  Google Scholar 

  21. V. V. Popov, A. P. Menushenkov, B. R. Gaynanov, et al., J. Phys.: Conf. Ser. 941, 012079 (2017).

    Google Scholar 

  22. P. G. Gagarin, A. V. Tyurin, V. N. Guskov, et al., Inorg. Mater. 53, 619 (2017).

    Article  CAS  Google Scholar 

  23. P. G. Gagarin, A. V. Tyurin, V. N. Guskov, et al., Inorg. Mater. 53, 944 (2017).

    Article  CAS  Google Scholar 

  24. M. E. Wieser, Pure Appl. Chem. 78, 2051 (2006).

    Article  CAS  Google Scholar 

  25. V. M. Gurevich, V. E. Gorbunov, K. S. Gavrichev, et al., Geochem. Int. 37, 367 (1999).

    Google Scholar 

  26. V. S. Iorish and P. I. Tolmach, J. Phys. Chem. 60, 2583 (1986).

    CAS  Google Scholar 

  27. M. Bolech, E. H. P. Cordfunke, F. J. J. G. Janssen, et al., J. Am. Ceram. Soc. 78, 2257 (1995).

    Article  CAS  Google Scholar 

  28. V. R. Korneev, V. B. Glushkova, and E. K. Keler, Inorg. Mater. 7, 886 (1971).

    CAS  Google Scholar 

  29. A. V. Radha, S. V. Ushakov, and A. Navrotsky, J. Mater. Res. 24, 3350 (2009).

    Article  CAS  Google Scholar 

  30. M. Bolech, E. H. P. Cordfunke, A. C. G. van Genderen, et al., J. Phys. Chem. Solids 58, 433 (1997).

    Article  CAS  Google Scholar 

  31. K. T. Jacob, N. Dasguta, and Y. Waseda, J. Am. Ceram. Soc. 81, 1926 (1998).

    Article  CAS  Google Scholar 

  32. C. Wang, O. Fabrichnaya, and M. Zinkevich, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 111 (2008).

    Article  CAS  Google Scholar 

  33. D. Sedmidubsky, O. Benes, and R. J. M. Konings, J. Chem. Thermodyn. 37, 1098 (2005).

    Article  CAS  Google Scholar 

  34. G. Maier and K. K. Kelley, J. Am. Chem. Soc. 54, 3243 (1932).

    Article  CAS  Google Scholar 

  35. O. Fabrichnaya, M. J. Kriegel, and J. Seidel, Thermochim. Acta 526, 50 (2011).

    Article  CAS  Google Scholar 

  36. ICCD PDF No. 01-074-8764.

  37. K. Popa, R. J. M. Konings, and F. Wastin, J. Phys. Chem. Solids 69, 70 (2008).

    Article  CAS  Google Scholar 

  38. S. Lutique, P. Javorsky, R. J. M. Konings, et al., J. Chem. Thermodyn. 36, 609 (2004).

    Article  CAS  Google Scholar 

  39. F. Fu-Kang, A. K. Kuznetsov, and E. K. Keler, Inorg. Mater. 4, 585 (1963).

    Google Scholar 

  40. K. Kimura, S. Nakatsuji, J.-J. Wen, et al., Nature Commun. 4 (1), (2013).

  41. K. Matsuhira, C. Sekine, Paulsen, et al., J. Phys: Conf. Ser. 145, 012031 (2009).

    Google Scholar 

  42. A. Hallas, Ho2Ge2O7 and Pr2Zr2O7: A Tale of Two Spin Ices (2013).

  43. ICCD PDF No. 01-078-7481.

  44. S. Lutique, P. Javorsky, R. J. M. Konings, et al., J. Chem. Thermodyn. 35, 955 (2003).

    Article  CAS  Google Scholar 

  45. H. W. Blote, R. F. Wielinga, and W. J. Huiskamp, Physica 43, 549 (1969).

    Article  CAS  Google Scholar 

  46. S. Lutique, R. J. M. Konings, V. V. Rondinella, et al., J. Alloys Compd. 352, 1 (2003).

    Article  CAS  Google Scholar 

  47. Z.-G. Liu, J. H. Quyang, B. H. Wang, et al., J. Alloys Compd. 475, 21 (2009).

    Article  CAS  Google Scholar 

  48. ICCD PDF2 No. 01-078-5956.

  49. A. Rouanet, Rev. Int. Hautes Temp. Refract. 8, 161 (1971).

    CAS  Google Scholar 

  50. A. R. Kopan, M. P. Gorbachuk, S. M. Lakiza, et al., Powder Metall. Met. Ceram. 49, 317 (2010).

    Article  CAS  Google Scholar 

  51. S. Singh, S. Saha, S. R. Dhar, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 77, 054408–1 (2008).

    Article  CAS  Google Scholar 

  52. Z.-G. Liu, J. H. Quyang, B. H. Wang, et al., Ceram. Int. 35, 791 (2009).

    Article  CAS  Google Scholar 

  53. Ch. Wang, M. Zinkevich, and F. Aldinger, J. Am. Ceram. Soc. 90, 2210 (2007).

    Article  CAS  Google Scholar 

  54. ICCD PDF No. 01-075-8266.

  55. O. Fabrichnaya, M. J. Kriegel, D. Pavlychkov, et al., Thermochim. Acta 558, 74 (2013).

    Article  CAS  Google Scholar 

  56. ICCD PDF No. 01-075-8268.

  57. A. M. Durand, P. Klavins, and L. P. Corruccini, J. Phys.: Condens. Matter 20, 1 (2008).

    Google Scholar 

  58. C. Thiriet, R. J. M. Konings, P. Javorsky, et al., J. Chem. Thermodyn. 37, 131 (2005).

    Article  CAS  Google Scholar 

  59. Z.-G. Liu, J. H. Quyang, and Y. Zho, Bull. Mater. Sci. 32, 603 (2009).

    Article  CAS  Google Scholar 

  60. ICCD PDF2 No. 01-075-8269.

  61. X. Qiang, P. Wei, W. Jingdong, et al., Mater. Lett. 59, 2804 (2005).

    Article  CAS  Google Scholar 

  62. E. I. Zoz, E. N. Fomichvev, A. A. Kalashnik, and G. G. Eliseeva, Russ. J. Inorg. Chem. 27, 37 (1982).

    Google Scholar 

  63. ICCD PDF No. 01-078-1293.

  64. ICCD PDF No. 01-078-1294.

  65. ICCD PDF No. 01-078-1299.

  66. K. I. Portnoi, N. I. Timofeeva, S. E. Salibekov, and I. V. Romanovich, Inorg. Mater. 8, 358 (1972).

    Google Scholar 

  67. P. G. Gagarin, A. V. Tyurin, V. N. Guskov, et al., Russ. J. Inorg. Chem. 63, 1478 (2018).

    Article  CAS  Google Scholar 

  68. E. F. Westrum, Jr., J. Therm. Anal. Calorim. 30, 1209 (1985).

    Article  CAS  Google Scholar 

  69. R. Shaviv, E. F. Westrum, Jr., J. B. Gruber, et al., J. Chem. Phys. 96, 6149 (1992).

    Article  CAS  Google Scholar 

  70. R. D. Chirico and E. F. Westrum, Jr., J. Chem. Thermodyn. 12, 311 (1980).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.V. Shlyakhtina (Doctor of Chemistry, Semenov Institute of Chemical Physics, Russian Academy of Sciences) for providing us with the lanthanum zirconate sample, A.V. Tyurin (Candidate of Chemistry) and A.V. Khoroshilov (Candidate of Chemistry) for the calorimetric experiment, and V.M. Gurevich (Candidate of Chemistry) for help in calculating the thermodynamic functions.

Funding

This work was performed within the state task for the Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences in the field of fundamental research under financial support of the Russian Foundation for Basic Research (project no. 15-03-04388) on the equipment of the Shared Facilities Center of the Kurnakov Institute of General and Inorganic Chemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Guskov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guskov, V.N., Gavrichev, K.S., Gagarin, P.G. et al. Thermodynamic Functions of Complex Zirconia Based Lanthanide Oxides—Pyrochlores Ln2Zr2O7 (Ln = La, Pr, Sm, Eu, Gd) and Fluorites Ln2O3 · 2ZrO2 (Ln = Tb, Ho, Er, Tm). Russ. J. Inorg. Chem. 64, 1265–1281 (2019). https://doi.org/10.1134/S0036023619100048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023619100048

Keywords:

Navigation