Skip to main content
Log in

Synthesis of Cu2O-Based Heterostructures and Their Photocatalytic Properties for Water Splitting

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the photocatalytic activity of Cu2O layers on conductive substrates (copper foil and fluorine-doped tin oxide (FTO)) for water splitting. Copper(I) oxide layers on copper foil have been produced by the anodic and chemical oxidation of the foil to copper(II) hydroxide, followed by thermal reduction, and by the hydrothermal oxidation of copper foil directly to Cu2O in an alkaline solution. Cu2O/FTO structures have been produced by Cu2O electrodeposition on FTO substrates from a copper lactate solution. The phase composition and morphology of the resultant photocatalysts have been assessed by X-ray diffraction and scanning electron microscopy. The highest photocatalytic activity has been offered by the sample prepared by the anodic oxidation of a copper plate: j = 1.6 mA/cm2 and η = 2.0%. The results of this study have been used to establish criteria that influence the photocatalytic activity of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Karol, R. and Grätzel, M., Photoelectrochemical Hydrogen Production, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-1380-6

  2. Chen, Z., Dinh, H.N., and Miller, E., Photoelectrochemical Water Splitting—Standards, Experimental Methods, and Protocols, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-8298-7

  3. Kozlova, E.A. and Parmon, V.N., Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors, Usp. Khim., 2017, vol. 86, no. 9, pp. 870–906. https://doi.org/10.1070/RCR4739

    Article  CAS  Google Scholar 

  4. Fajrina, N. and Tahir, M., A critical review in strategies to improve photocatalytic water splitting towards hydrogen production, Int. J. Hydrogen Energy, 2018, vol. 44, no. 2, pp. 540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200

    Article  CAS  Google Scholar 

  5. Brandt, I.S., Tumelero, M.A., Pelegrini, S., Zangari, G., and Pasa, A.A., Electrodeposition of Cu2O: growth, properties, and applications, J. Solid State Electrochem., 2017, vol. 21, no. 7, pp. 1999–2020. https://doi.org/10.1007/s10008-017-3660-x

    Article  CAS  Google Scholar 

  6. Zhou, B., Liu, Z., Wang, H., Yang, Y., and Su, W., Experimental study on photocatalytic activity of Cu2O/Cu nanocomposites under visible light, Catal. Lett., 2009, vol. 132, nos. 1–2, pp. 75–80. https://doi.org/10.1007/s10562-009-0063-3

    Article  CAS  Google Scholar 

  7. Wick, R. and Tilley, S.D., Photovoltaic and photoelectrochemical solar energy conversion with Cu2O, J. Phys. Chem. C, 2015, vol. 119, no. 47, pp. 26 243–26 257. https://doi.org/10.1021/acs.jpcc.5b08397

  8. Sullivan, I., Zoellner, B., and Maggard, P.A., Copper(I)-based p-type oxides for photoelectrochemical and photovoltaic solar energy conversion, Chem. Mater., 2016, vol. 28, no. 17, pp. 5999–6016. https://doi.org/10.1021/acs.chemmater.6b00926

    Article  CAS  Google Scholar 

  9. Momeni, M.M., Ghayeb, Y., and Menati, M., Fabrication, characterization and photoelectrochemical properties of cuprous oxide-reduced graphene oxide photocatalysts for hydrogen generation, J. Mater. Sci.–Mater. Electron., 2018, vol. 29, no. 5, pp. 4136–4146. https://doi.org/10.1007/s10854-017-8358-4

    Article  CAS  Google Scholar 

  10. Han, J., Chang, J., Wei, R., Ning, X., Li, J., Li, Z., Guo, H., and Yang, Y., Mechanistic investigation on tuning the conductivity type of cuprous oxide (Cu2O) thin films via deposition potential, Int. J. Hydrogen Energy, 2018, vol. 43, no. 30, pp. 13 764–13 777. https://doi.org/10.1016/j.ijhydene.2018.02.121

  11. Kalubowila, K.D.R.N., Jayathileka, K.M.D.C., Kumara, L.S.R., Ohara, K., Kohara, S., Sakata, O., Gunewardene, M.S., Jayasundara, J.M.D.R., Dissanayake, D.P., and Jayanetti, J.K.D.S., Effect of bath pH on electronic and morphological properties of electrodeposited Cu2O thin films, J. Electrochem. Soc., 2019, vol. 166, no. 4, pp. 113–119. https://doi.org/10.1149/2.0551904jes

    Article  CAS  Google Scholar 

  12. Liau, L.C.K., Lin, Y.C., and Peng, Y.J., Fabrication pathways of pn Cu2O homojunction films by electrochemical deposition processing, J. Phys. Chem. C, 2013, vol. 117, no. 50, pp. 26 426–26 431. https://doi.org/10.1021/jp405715c

  13. Shahbazi, P. and Kiani, A., Fabricated Cu2O porous foam using electrodeposition and thermal oxidation as a photocatalyst under visible light toward hydrogen evolution from water, Int. J. Hydrogen Energy, 2016, vol. 41, no. 39, pp. 17 247–17 256. https://doi.org/10.1016/j.ijhydene.2016.07.080

  14. Yang, C., Tran, P.D., Boix, P.P., Bassi, P.S., Yantara, N., Wong, L.H., and Barber, J., Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water, Nanoscale, 2014, vol. 6, no. 12, pp. 6506–6510. https://doi.org/10.1039/C4NR00386A

    Article  CAS  PubMed  Google Scholar 

  15. Li, C., Li, Y., and Delaunay, J.J., A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 1, pp. 480–486. https://doi.org/10.1021/am404527q

    Article  CAS  PubMed  Google Scholar 

  16. Zimbovskii, D.S. and Baranov, A.N., One-step hydrothermal surface oxidation of copper foil for photocatalytic water splitting, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 525, paper 12 018. https://doi.org/10.1088/1757-899X/525/1/012018

  17. Zimbovskii, D.S. and Churagulov, B.R., Cu2O and CuO films produced by chemical and anodic oxidation on the surface of copper foil, Inorg. Mater., 2018, vol. 54, no. 7, pp. 660–666. https://doi.org/10.1134/S0020168518070208

    Article  CAS  Google Scholar 

  18. Zimbovskii, D.S., Churagulov, B.R., and Baranov, A.N., Hydrothermal synthesis of Cu2O films on the surface of metallic copper in a NaOH solution, Inorg. Mater., 2019, vol. 55, no. 6, pp. 623–627. https://doi.org/10.1134/S0020168519060177

    Article  Google Scholar 

  19. Tawfik, W.Z., Hassan, M.A., Johar, M.A., Ryu, S.W., and Lee, J.K., Highly conversion efficiency of solar water splitting over p-Cu2O/ZnO photocatalyst grown on a metallic substrate, J. Catal., 2019, vol. 374, pp. 276–283. https://doi.org/10.1016/j.jcat.2019.04.045

    Article  CAS  Google Scholar 

  20. Luo, J., Steier, L., Son, M.K., Schreier, M., Mayer, M.T., and Grätzel, M., Cu2O nanowire photocathodes for efficient and durable solar water splitting, Nano Lett., 2016, vol. 16, no. 3, pp. 1848–1857. https://doi.org/10.1021/acs.nanolett.5b04929

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Baranov.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimbovskii, D.S., Baranov, A.N. Synthesis of Cu2O-Based Heterostructures and Their Photocatalytic Properties for Water Splitting. Inorg Mater 56, 366–373 (2020). https://doi.org/10.1134/S0020168520040159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520040159

Keywords:

Navigation