Skip to main content

Advertisement

Log in

Fabrication, characterization and photoelectrochemical properties of cuprous oxide-reduced graphene oxide photocatalysts for hydrogen generation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Reduced graphene oxide protected Cu2O/Cu foil (rGO/Cu2O/Cu foil) photocathodes have been synthesized via a two-step strategy. (NH4)2S2O8 was first used to oxidize Cu foil and prepare Cu(OH)2 nanostructures/Cu foil. In the second step, graphene oxide (GO) solution and the prepared Cu(OH)2/Cu foil sample were hydrothermally reacted in a Teflon lined stainless steel autoclave for different periods of time at 120 °C, followed by calcination at 450 °C under N2 atmosphere for 3 h. The effect of modification of rGO on the photoelectrochemical activity of different rGO/Cu2O/Cu foil samples has been studied by FESEM, XRD, FTIR, Raman spectroscopy and UV–Vis diffuse reflectance spectroscopy. Continuous and transparent layer of GO sheets are formed on the surface of Cu(OH)2 nanostructures/Cu foil, according to FESEM results. The photoelectrochemical properties of the prepared samples in the dark and under illumination conditions were investigated using linear sweep voltammetry and chronoamperometry techniques. The rGO/Cu2O/Cu foil photocathodes exhibit enhanced photocurrent density under illumination (85 mW/cm2) in comparison with the bare Cu2O/Cu foil photocathode. The improved separation efficiency of photogenerated charge carriers may be mainly accounted for this enhanced photoelectrochemical performance. A low photostability of 12.5% of the initial photocurrent density was observed for the bare Cu2O/Cu foil photocathode after 1000s of illumination whereas this value reached to almost 77% after modification of rGO. The new rGO/Cu2O/Cu foil nanocomposite prepared in this study is believed to be a promising photocathode material in photoelectrochemical cells for efficient water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. I. Concina, A. Vomiero, Small 11, 1744 (2015)

    Article  Google Scholar 

  2. L. Ding, E.Y.L. Fan, S. Yang, Chem. Commun. 49, 6286 (2013)

    Article  Google Scholar 

  3. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380 (2009)

    Article  Google Scholar 

  4. A.E. Rakhshani, F.K. Barakat, Mater. Lett. 6, 37 (1987)

    Article  Google Scholar 

  5. M. Umadevi, A. Jegatha Christy, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 109, 133 (2013)

    Article  Google Scholar 

  6. F. Shao, F.H. Ramirez, J.D. Prades, C. Fabrega, Appl. Surf. Sci. 311, 177 (2014)

    Article  Google Scholar 

  7. L. Hu, Y. Ju, M. Chen, A. Hosoi, S. Arai, Appl. Surf. Sci. 305, 710 (2014)

    Article  Google Scholar 

  8. H. Wu, S. Lee, W. Lu, K. Chang, Appl. Surf. Sci. 244, 236 (2015)

    Article  Google Scholar 

  9. L. Ma, Y. Lin, Y. Wang, J. Li, E. Wang, M. Qiu, Y. Yu, J. Phys. Chem. C 112, 18916 (2008)

    Article  Google Scholar 

  10. A. Paracchino, J.C. Brauer, J.E. Moser, E. Thimsen, M. Gratzel, J. Phys. Chem. C 116, 7341 (2012)

    Article  Google Scholar 

  11. P.E. de Jongh, D. Vanmaekelbergh, J.J. Kelly, J. Electrochem. Soc. 147, 486 (2000)

    Article  Google Scholar 

  12. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)

    Article  Google Scholar 

  13. J. Cui, U.J. Gibson, J. Phys. Chem. C 114, 6408 (2010)

    Article  Google Scholar 

  14. F. Shao, J. Sun, L. Gao, J. Luo, Y. Liu, S. Yang, Adv. Funct. Mater. 22, 3907 (2012)

    Article  Google Scholar 

  15. D. Snoke, Science 298, 1368 (2002)

    Article  Google Scholar 

  16. L. Xueqin, L. Zhen, Z. Wen, Z. Caixin, J. Mater. Chem. A 3, 19148 (2015)

    Article  Google Scholar 

  17. C. Yang, P.D. Tran, P.P. Boix, P.S. Bassi, N. Yantara, L.H. Wong, J Barber, Nanoscale 6, 6506 (2014)

    Article  Google Scholar 

  18. S. Weina, Z. Xiaofan, L. Shaohui, Z. Bingyan, Appl. Surf. Sci. 358, 404 (2015)

    Article  Google Scholar 

  19. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, Solid State Commun. 146, 351 (2008)

    Article  Google Scholar 

  20. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Science 306, 666 (2004)

    Article  Google Scholar 

  21. C. Lee, X.D. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

  22. A.A.K. Geim, A.H.A. MacDonald, Phys. Today 60, 35 (2007)

    Google Scholar 

  23. K. Choi, A. Ali, J. Jo, J. Mater. Sci. Mater. Electron. 24, 4893 (2013)

    Article  Google Scholar 

  24. H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M.H. Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006)

    Article  Google Scholar 

  25. F. Akbar, M. Kolahdouz, Sh Larimian, B. Radfar, H.H. Radamson, J. Mater. Sci. Mater. Electron. 26, 4347 (2015)

    Article  Google Scholar 

  26. T. Jingqi, L. Haiyan, X. Zhicai, W. Lei, L. Yonglan, Catal. Sci. Technol. 2, 2227 (2012)

    Article  Google Scholar 

  27. A.A. Dubale, W.N. Su, A.G. Tamirat, J. Mater. Chem. A 2, 18383 (2014)

    Article  Google Scholar 

  28. Z. Zhang, R. Dua, L. Zhang, H. Zhu, ACS Nano 7, 1709 (2013)

    Article  Google Scholar 

  29. G. Xie, K. Zhang, B. Guo, Q. Liu, L. Fang, J.R. Gong, Adv. Mater. 25, 3820 (2013)

    Article  Google Scholar 

  30. W.S. Hummers Jr., R.E. Offeman, Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  31. C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku, T. Kuila, J.H. Lee, Carbon 49, 3497 (2011)

    Article  Google Scholar 

  32. P. Su, H.L. Guo, L. Tian, S.K. Ning, Carbon 15, 5351 (2012)

    Article  Google Scholar 

  33. X. Zhang, K. Li, H. Li, J. Lu, Q. Fu, Y. Chu, Synth. Met. 193, 132 (2014)

    Article  Google Scholar 

  34. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Article  Google Scholar 

  35. Y. Liu, F. Ren, S. Shen, Y. Fu, C. Chen, C. Liu, Z. Xing, D. Liu, X. Xiao, W. Wu, X. Zheng, Y. Liu, C. Jiang, Appl. Phys. Lett. 106, 123901 (2015)

    Article  Google Scholar 

  36. M.M. Momeni, Z. Nazari, A. Kazempour, M. Hakimiyan, S.M. Mirhoseini, Surf. Eng. 30, 775 (2014)

    Article  Google Scholar 

  37. C. Hontoria-Lucas, A.J. López-Peinado, J.D. López-González, Carbon 33, 1585 (1995)

    Article  Google Scholar 

  38. G. Papadimitropoulos, N. Vourdas, V.E. Vamvakas, D. Davazoglou, Thin Solid Films 515, 2428 (2006)

    Article  Google Scholar 

  39. S. Gurunathan, J.W. Han, V. Eppakayala, J.H. Kim, Colloids Surf. B 102, 772 (2013)

    Article  Google Scholar 

  40. L. Rumin, D. Guojun, C. Guanmao, New J. Chem. 39, 6854 (2015)

    Article  Google Scholar 

  41. S. Yang, S. Du, S. Yiming, Z. Dongfeng, G. Lin, Chem. Eur. J. 18, 14261 (2012)

    Article  Google Scholar 

  42. A.W. Bott, Curr. Sep. 17, 87 (1998)

    Google Scholar 

  43. H. Qiang, Y. Zi, X. Xudong, J. Mater. Chem. A 3, 15824 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mohsen Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, M.M., Ghayeb, Y. & Menati, M. Fabrication, characterization and photoelectrochemical properties of cuprous oxide-reduced graphene oxide photocatalysts for hydrogen generation. J Mater Sci: Mater Electron 29, 4136–4146 (2018). https://doi.org/10.1007/s10854-017-8358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8358-4

Navigation