Skip to main content
Log in

Electrodeposition of Cu2O: growth, properties, and applications

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

For a long time, the world has been waiting for a sustainable, inexpensive, and efficient material for application in electronic and energy conversion purposes. Cu2O thin films made by electrodeposition clearly fulfill the sustainability and cost pre-requisites, and are broadly believed that they could lead to the fabrication of highly efficient devices if well prepared and designed. Here, we review the fundamentals for electrochemical synthesis and the electrodeposition aspects and procedures for growing Cu2O. The properties of electrodeposited Cu2O in thin films and nanostructures will be discussed in view of the literature, with emphasis on the electrical and optical properties and applications in photocatalysis and photovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Inorganic Crystal Structure Database (ICSD) (2007) No Title. Fachinformationszentrum Karlsruhe, Ger. U.S. Dep. Commer. behalf United States

  2. Grondahl LO (1926) A new type of contact rectifier. Phys Rev 27:823

  3. Grondahl LO, Geiger PH (1927) New electronic rectifier. Trans A I E E 46:357

  4. Wick R, Tilley SD (2015) Photovoltaic and photoelectrochemical solar energy conversion with Cu2O. J Phys Chem C 119:26243–26257

    Article  CAS  Google Scholar 

  5. Schreier M, Luo J, Gao P et al (2016) Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J am Chem Soc 138:1938–1946

    Article  CAS  Google Scholar 

  6. Yazdanparast S, Koza JA, Switzer JA (2015) Copper nanofilament formation during unipolar resistance switching of electrodeposited cuprous oxide. Chem Mater 27:5974–5981. doi:10.1021/acs.chemmater.5b02041

    Article  CAS  Google Scholar 

  7. Yang G, Chen A, Fu M et al (2010) Excimer laser deposited CuO and Cu2O films with third-order optical nonlinearities by femtosecond z-scan measurement. Appl Phys a Mater Sci Process 104:171–175. doi:10.1007/s00339-010-6092-3

    Article  CAS  Google Scholar 

  8. Delatorre RG, Munford ML, Zandonay R et al (2006) p-Type metal-base transistor. Appl Phys Lett 88:233504

    Article  CAS  Google Scholar 

  9. Therese GHA, Kamath PV (2000) Electrochemical synthesis of metal oxides and hydroxides. Chem Mater 12:1195–1204

    Article  CAS  Google Scholar 

  10. Golden TD, Shumsky MG, Zhou Y et al (1996) Electrochemical deposition of copper(I) oxide films. Chem Mater 8:2499–2504

    Article  CAS  Google Scholar 

  11. de Jongh PE, Vanmaekelbergh D, Kelly JJ (1999) Cu2O: electrodeposition and characterization. Chem Mater 11:3512–3517

    Article  Google Scholar 

  12. Beverskog B, Puigdomenech I (1997) Revised Pourbaix diagrams for copper at 25 to 300°C. J Electrochem Soc 144:3476–3483

    Article  CAS  Google Scholar 

  13. Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier Publishing Company Inc., Amsterdam

    Google Scholar 

  14. McShane CM, Choi K-S (2009) Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. J am Chem Soc 131:2561–2569

    Article  CAS  Google Scholar 

  15. Educational material: Pourbaix diagrams. In: Found. Comput Thermodyn http://www.thermocalc.com/media/21524/pourbaix-diagrams.pdf. Accessed 3 Apr 2017

  16. Raebiger H, Lany S, Zunger A (2007) Origins of the p-type nature and cation deficiency in Cu2O and related materials. Phys Rev B 76:45209

    Article  CAS  Google Scholar 

  17. Rakhshani AE, Varghese J (1987) Galvanostatic deposition of thin films of cuprous oxide. Sol Energy Mater 15:237–248

    Article  CAS  Google Scholar 

  18. Poizot P, Hung C-J, Nikiforov MP et al (2003) An electrochemical method for CuO thin film deposition from aqueous solution. Electrochem Solid-State Lett 6:C21. doi:10.1149/1.1535753

    Article  CAS  Google Scholar 

  19. Jayathileke KMDC, Siripala W, Jayanetti JKDS (2010) Electrodeposition of p-type, n-type and p-n homojunction cuprous oxide thin films. Sri Lankan J Phys 9:35–46

    Article  Google Scholar 

  20. Wijesundera RP, Gunawardhana LKADDS, Siripala W (2016) Electrodeposited Cu2O homojunction solar cells: fabrication of a cell of high short circuit photocurrent. Sol Energy Mater sol Cells 157:881–886

    Article  CAS  Google Scholar 

  21. Lee J, Tak Y (1999) Epitaxial growth of Cu2O (111) by electrodeposition. Electrochem Solid-State Lett 2:559–560

    Article  CAS  Google Scholar 

  22. Zheng JY, Jadhav AP, Song G et al (2012) Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition. Thin Solid Films 524:50–56

    Article  CAS  Google Scholar 

  23. Siegfried MJ, Choi K-S (2004) Electrochemical crystallization of cuprous oxide with systematic shape evolution. Adv Mater 16:1743–1746

    Article  CAS  Google Scholar 

  24. Siripala W, Jayakody JRP (1986) Observation of n-type photoconductivity in electrodeposited copper oxide film electrodes in a photoelectrochemical cell. Sol Energy Mater 14:23–27

    Article  CAS  Google Scholar 

  25. Fernando CAN, Wetthasinghe SK (2000) Investigation of photoelectrochemical characteristics of n-type Cu2O films. Sol Energy Mater Sol Cells 63:299–308

    Article  CAS  Google Scholar 

  26. Wang L, Tao M (2007) Fabrication and characterization of p-n homojunctions in cuprous oxide by electrochemical deposition. Electrochem Solid-State Lett 10:H248–H250

    Article  CAS  Google Scholar 

  27. Siripala W, Perera LDRD, De Silva KTL et al (1996) Study of annealing effects of cuprous oxide grown by electrodeposition technique. Sol Energy Mater sol Cells 44:251–260

    Article  CAS  Google Scholar 

  28. Kafi FSB, Jayathileka KMDC, Wijesundera RP, Siripala W (2016) Fermi-level pinning and effect of deposition bath pH on the flat-band potential of electrodeposited n-Cu2O in an aqueous electrolyte. Phys Status Solidi Basic Res 253:1965–1969. doi:10.1002/pssb.201600288

    Article  CAS  Google Scholar 

  29. Garuthara R, Siripala W (2006) Photoluminescence characterization of polycrystalline n-type Cu2O films. J Lumin 121:173–178

    Article  CAS  Google Scholar 

  30. Han X, Han K, Tao M (2009) N-type Cu2O by electrochemical doping with Cl. Electrochem Solid-State Lett 12:H89–H91

  31. Wei HM, Gong HB, Chen L et al (2012) Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J Phys Chem C 116:10510–10515

    Article  CAS  Google Scholar 

  32. Wang P, Wu H, Tang Y et al (2015) Electrodeposited Cu2O as photoelectrodes with controllable conductivity type for solar energy conversion. J Phys Chem C 119:26275–26282

    Article  CAS  Google Scholar 

  33. Kalubowila KDRN, Gunawardhana LKADDS, Wijesundera RP, Siripala W (2014) Methods for improving n-type photoconductivity of electrodeposited Cu2O thin films. Semicond Sci Technol 29:75012

    Article  CAS  Google Scholar 

  34. Elfadill NG, Hashim MR, Chahrour KM, Mohammed SA (2016) Preparation of p-type Na-doped Cu2O by electrodeposition for a p-n homojunction thin film solar cell. Semicond Sci Technol 31:65001

    Article  CAS  Google Scholar 

  35. Wulff G (1901) On the question of speed of growth and dissolution of crystal surfaces. Z Krist 34:449–530

    CAS  Google Scholar 

  36. Mann S (2000) The chemistry of form. Angew Chem Int Ed 39:3392–3406

    Article  CAS  Google Scholar 

  37. Sun F, Guo Y, Tian Y et al (2008) The effect of additives on the Cu2O crystal morphology in acetate bath by electrodeposition. J Cryst Growth 310:318–323

    Article  CAS  Google Scholar 

  38. McShane CM, Siripala WP, Choi KS (2010) Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells. J Phys Chem Lett 1:2666–2670

    Article  CAS  Google Scholar 

  39. Kaur J, Bethge O, Wibowo RA et al (2017) All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode. Sol Energy Mater Sol Cells 161:449–459

    Article  CAS  Google Scholar 

  40. Tsui L, Zangari G (2014) Electrochemical synthesis of metal oxides for energy applications. In: White RE, Vayenas CG (eds) Mod. Asp. Electrochem. Springer, New York, pp 217–240

    Google Scholar 

  41. Zhou YC, Switzer JA (1998) Galvanostatic electrodeposition and microstructure of copper (I) oxide film. Mater Res Innov 2:22–27

    Article  CAS  Google Scholar 

  42. Rakhshani AE, Al-Jassar AA, Varghese J (1987) Electrodeposition and characterization of cuprous oxide. Thin Solid Films 148:191–201

    Article  CAS  Google Scholar 

  43. Zhou Y, Switzer JA (1998) Electrochemical deposition and microstructure of copper (I) oxide films. Scr Mater 38:1731–1738

    Article  CAS  Google Scholar 

  44. Li G, Huang Y, Fan Q et al (2016) Effects of bath pH on structural and electrochemical performance of Cu2O. Ionics (Kiel) 22:2213–2223

    Article  CAS  Google Scholar 

  45. Nian J-N, Tsai C-C, Lin P-C, Teng H (2009) Elucidating the conductivity-type transition mechanism of p-type Cu2O films from electrodeposition. J Electrochem Soc 156:H567–H573

    Article  CAS  Google Scholar 

  46. Nishi Y, Miyata T, Minami T (2016) Electrochemically deposited Cu2O thin films on thermally oxidized Cu2O sheets for solar cell applications. Sol Energy Mater Sol Cells 155:405–410

    Article  CAS  Google Scholar 

  47. Elmezayyen AS, Guan S, Reicha FM et al (2015) Effect of conductive substrate (working electrode) on the morphology of electrodeposited Cu2O. J Phys D Appl Phys 48:175502

    Article  CAS  Google Scholar 

  48. Sun F, Guo Y, Song W et al (2007) Morphological control of Cu2O micro-nanostructure film by electrodeposition. J Cryst Growth 304:425–429

    Article  CAS  Google Scholar 

  49. Zhang H, Ren X, Cui Z (2007) Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers. J Cryst Growth 304:206–210

    Article  CAS  Google Scholar 

  50. Zhang Z, Hu W, Deng Y et al (2012) The effect of complexing agents on the oriented growth of electrodeposited microcrystalline cuprous oxide film. Mater Res Bull 47:2561–2565

    Article  CAS  Google Scholar 

  51. Wang LC, de Tacconi NR, Chenthamarakshan CR et al (2007) Electrodeposited copper oxide films: effect of bath pH on grain orientation and orientation-dependent interfacial behavior. Thin Solid Films 515:3090–3095

    Article  CAS  Google Scholar 

  52. Brandt IS, Martins CA, Zoldan VC et al (2014) Structural and optical properties of Cu2O crystalline electrodeposited films. Thin Solid Films 562:144–151

    Article  CAS  Google Scholar 

  53. Switzer JA, Kothari HM, Bohannan EW (2002) Thermodynamic to kinetic transition in epitaxial electrodeposition. J Phys Chem B 106:4027–4031

    Article  CAS  Google Scholar 

  54. Barton JK, Vertegel AA, Bohannan EW, Switzer JA (2001) Epitaxial electrodeposition of copper (I) oxide on single-crystal copper. Chem Mater 13:952–959

    Article  CAS  Google Scholar 

  55. Brandt IS, Zoldan VC, Stenger V et al (2015) Substrate effects and diffusion dominated roughening in Cu2O electrodeposition. J Appl Phys. doi:10.1063/1.4932642

  56. Jayathilaka KMDC, Jayasinghe AMR, Sumanasekara GU et al (2015) Effect of chlorine doping on electrodeposited cuprous oxide thin films on Ti substrates. Phys Status Solidi Basic Res 252:1300–1305

    Article  CAS  Google Scholar 

  57. Pelegrini S, Brandt IS, Plá Cid CC et al (2015) Electrochemical Cl doping of Cu2O: structural and morphological properties. ECS J Solid State Sci Technol 4:P181–P185

    Article  CAS  Google Scholar 

  58. Werner A, Hochheimer HD (1982) High-pressure x-ray study of Cu2O and Ag2O. Phys Rev B 25:5929–5934

    Article  CAS  Google Scholar 

  59. Mahalingam T, Chitra JS, Rajendran S et al (2000) Galvanostatic deposition and characterization of cuprous oxide thin films. J Cryst Growth 216:304–310

    Article  CAS  Google Scholar 

  60. Mahalingam T, Chitra JSP, Rajendran S, Sebastian PJ (2002) Potentiostatic deposition and characterization of Cu2O thin films. Semicond Sci Technol 17:565–569

    Article  CAS  Google Scholar 

  61. Han K, Tao M (2009) Electrochemically deposited p–n homojunction cuprous oxide solar cells. Sol Energy Mater sol Cells 93:153–157

    Article  CAS  Google Scholar 

  62. Mizuno K, Izaki M, Murase K et al (2005) Structural and electrical characterizations of electrodeposited p-type semiconductor Cu2O films. J Electrochem Soc 152:C179–C189

    Article  CAS  Google Scholar 

  63. Rakhshani AE (1991) The role of space-charge-limited-current conduction in evaluation of the electrical properties of thin Cu2O films. J Appl Phys 69:2365–2369

    Article  CAS  Google Scholar 

  64. Brandt IS, de Araujo CIL, Stenger V et al (2008) Electrical characterization of Cu/Cu2O electrodeposited contacts. ECS Trans 14:413–419

  65. Musa AO, Akomolafe T, Carter MJ (1998) Production of cuprous oxide, a solar cell material, by thermal oxidation and a study of its physical and electrical properties. Sol Energy Mater Sol Cells 51:305–316

    Article  CAS  Google Scholar 

  66. Ishizuka S, Kato S, Okamoto Y, Akimoto K (2002) Control of hole carrier density of polycrystalline Cu2O thin films by Si doping. Appl Phys Lett 80:950–952

    Article  CAS  Google Scholar 

  67. Suzuki S, Miyata T, Minami T (2003) p -type semiconducting Cu2O–CoO thin films prepared by magnetron sputtering. J Vac Sci Technol A Vacuum, Surfaces, Film 21:1336–1341

  68. Pan L, Zhu H, Fan C et al (2005) Mn-doped Cu2O thin films grown by rf magnetron sputtering. J Appl Phys 97:10D318

    Article  CAS  Google Scholar 

  69. Kale SN, Ogale SB, Shinde SR et al (2003) Magnetism in cobalt-doped Cu2O thin films without and with Al, V, or Zn codopants. Appl Phys Lett 82:2100. doi:10.1063/1.1564864

    Article  CAS  Google Scholar 

  70. Kikuchi N, Tonooka K (2005) Electrical and structural properties of Ni-doped Cu2O films prepared by pulsed laser deposition. Thin Solid Films 486:33–37

    Article  CAS  Google Scholar 

  71. Pallecchi I, Pellegrino L, Banerjee N et al (2010) Cu2O as a nonmagnetic semiconductor for spin transport in crystalline oxide electronics. Phys Rev B 81:165311

    Article  CAS  Google Scholar 

  72. Jayewardena C, Hewaparakrama KP, Wijewardena DLA, Guruge H (1998) Fabrication of n-Cu2O electrodes with higher energy conversion efficiency in a photoelectrochemical cell. Sol Energy Mater Sol Cells 56:29–33

    Article  CAS  Google Scholar 

  73. Wang W, Wu D, Zhang Q et al (2010) pH -dependence of conduction type in cuprous oxide synthesized from solution. J Appl Phys 107:123717

    Article  CAS  Google Scholar 

  74. Scanlon DO, Morgan BJ, Watson GW, Walsh A (2009) Acceptor levels in p-type Cu2O: rationalizing theory and experiment. Phys Rev Lett 103:96405

    Article  CAS  Google Scholar 

  75. Wright AF, Nelson JS (2002) Theory of the copper vacancy in cuprous oxide. J Appl Phys 92:5849–5851

    Article  CAS  Google Scholar 

  76. Scanlon DO, Watson GW (2010) Undoped n-type Cu2O: fact or fiction? J Phys Chem Lett 1:2582–2585

    Article  CAS  Google Scholar 

  77. Soon A, Cui X-Y, Delley B et al (2009) Native defect-induced multifarious magnetism in nonstoichiometric cuprous oxide: first-principles study of bulk and surface properties of Cu2−δO. Phys Rev B 79:35205

    Article  CAS  Google Scholar 

  78. Paul GK, Nawa Y, Sato H et al (2006) Defects in Cu2O studied by deep level transient spectroscopy. Appl Phys Lett 88:141901

    Article  CAS  Google Scholar 

  79. Rakhshani AE (1991) Thermostimulated impurity conduction in characterization of electrodeposited Cu2O films. J Appl Phys 69:2290–2295

    Article  CAS  Google Scholar 

  80. Rakhshani AE, Makdisi Y, Mathew X (1996) Deep energy levels and photoelectrical properties of thin cuprous oxide films. Thin Solid Films 288:69–75

    Article  CAS  Google Scholar 

  81. Yildiz A, Serin N, Serin T, Kasap M (2016) The effect of intrinsic defects on the hole transport in Cu2O. Optoelectron Adv Mater 3:1034–1037

    Google Scholar 

  82. Mittiga A, Biccari F, Malerba C (2009) Intrinsic defects and metastability effects in Cu2O. Thin Solid Films 517:2469–2472

    Article  CAS  Google Scholar 

  83. Pollack GP, Trivich D (1975) Photoelectric properties of cuprous oxide. J Appl Phys 46:163–172

    Article  CAS  Google Scholar 

  84. Scanlon DO, Morgan BJ, Watson GW (2009) Modeling the polaronic nature of p-type defects in Cu2O: the failure of GGA and GGA+U. J Chem Phys 131:124703

    Article  CAS  Google Scholar 

  85. Liu YL, Harrington S, Yates KA et al (2005) Epitaxial, ferromagnetic Cu2-xMnxO films on (001) Si by near-room-temperature electrodeposition. Appl Phys Lett 87:222108

    Article  CAS  Google Scholar 

  86. Lee YS, Heo J, Winkler MT et al (2013) Nitrogen-doped cuprous oxide as a p-type hole-transporting layer in thin-film solar cells. J Mater Chem a 1:15416–15422. doi:10.1039/c3ta13208k

    Article  CAS  Google Scholar 

  87. Li J, Mei Z, Liu L et al (2014) Probing defects in nitrogen-doped Cu2O. Sci Report 4:7240

    Article  CAS  Google Scholar 

  88. Malerba C, Ricardo CLA, D’Incau M et al (2012) Nitrogen doped Cu2O: a possible material for intermediate band solar cells? Sol Energy Mater sol Cells 105:192–195

    Article  CAS  Google Scholar 

  89. Haller S, Jung J, Rousset J, Lincot D (2012) Effect of electrodeposition parameters and addition of chloride ions on the structural and optoelectronic properties of Cu2O. Electrochim Acta 82:402–407

    Article  CAS  Google Scholar 

  90. Pelegrini S, de Araujo CIL, da Silva RC et al (2010) Electrical characterization of Cu2O n-type doped with chlorine. ECS Trans 31:143–148

    Article  CAS  Google Scholar 

  91. Wu S, Yin Z, He Q et al (2011) Electrochemical deposition of Cl-doped n-type Cu2O on reduced graphene oxide electrodes. J Mater Chem 21:3467–3470

    Article  CAS  Google Scholar 

  92. Yu L, Xiong L, Yu Y (2015) Cu2O Homojunction solar cells: F-doped N-type thin film and highly improved efficiency. J Phys Chem C 119:22803–22811

    Article  CAS  Google Scholar 

  93. Cai X, Su X, Ye F et al (2015) The n-type conduction of indium-doped Cu2O thin films fabricated by direct current magnetron co-sputtering. Appl Phys Lett 107:83901

    Article  CAS  Google Scholar 

  94. Bai Q, Wang W, Zhang Q, Tao M (2015) n-type doping in Cu2O with F, Cl, and Br: a first-principles study. J Appl Phys 111:23709

    Article  CAS  Google Scholar 

  95. Rakhshani AE (1987) Measurement of dispersion in electrodeposited Cu2O. J Appl Phys 62:1528–1529

    Article  CAS  Google Scholar 

  96. Wemple SH, DiDomenico M Jr (1971) Behavior of the electronic dielectric constant in covalent and ionic materials. Phys rev B 3:1338–1351

    Article  Google Scholar 

  97. Pereira ALJ, da Silva JHD (2008) Disorder effects produced by the Mn and H incorporations on the optical absorption edge of Ga1-xMnxAs:H nanocrystalline films. J Non-Cryst Solids 354:5372–5377

    Article  CAS  Google Scholar 

  98. Soon A, Todorova M, Delley B, Stampfl C (2007) Thermodynamic stability and structure of copper oxide surfaces: a first-principles investigation. Phys Rev B 75:125420

    Article  CAS  Google Scholar 

  99. Ito T, Masumi T (1997) Detailed examination of relaxation processes of excitons III photoluminescence spectra of Cu20. J Phys Soc Jpn 66:2185–2193

    Article  CAS  Google Scholar 

  100. Liu YL, Liu YC, Mu R et al (2005) The stuctural and optical properties of Cu2O films electrodeposited on different substrates. Semicond Sci Technol 20:44–49

  101. Izaki M, Sasaki S, Mohamad FB et al (2012) Effects of preparation temperature on optical and electrical characteristics of (111)-oriented Cu2O films electrodeposited on (111)-Au film. Thin Solid Films 520:1779–1783. doi:10.1016/j.tsf.2011.08.079

    Article  CAS  Google Scholar 

  102. Messaoudi O, Makhlouf H, Souissi A et al (2014) Correlation between optical and structural properties of copper oxide electrodeposited on ITO glass. J Alloys Compd 611:142–148

    Article  CAS  Google Scholar 

  103. Nolan M, Elliott SD (2008) Tuning the transparency of Cu2O with substitutional cation doping. Chem Mater 20:5522–5531

    Article  CAS  Google Scholar 

  104. Buljan A, Llunell M, Ruiz E, Alemany P (2001) Color and conductivity in Cu2O and CuAlO2: a theoretical analysis of d10...d10 interactions in solid-state compounds. Chem Matter 13:338–344

    Article  CAS  Google Scholar 

  105. Messaoudi O, Ben AI, Gannouni M et al (2016) Structural, morphological and electrical characteristics of electrodeposited Cu2O: effect of deposition time. Appl Surf Sci 366:383–388

    Article  CAS  Google Scholar 

  106. Ren S, Zhao G, Wang Y et al (2015) Enhanced photocatalytic performance of sandwiched ZnO@Ag@Cu2O nanorod films: the distinct role of Ag NPs in the visible light and UV region. Nanotechnology 26:125403

    Article  CAS  Google Scholar 

  107. Chen C, He L, Lai L et al (2009) Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies. J Phys Condens Matter 21:145601

    Article  CAS  Google Scholar 

  108. Liao L, Yan B, Hao YF et al (2009) P-type electrical, photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires. Appl Phys Lett 94:113106

    Article  CAS  Google Scholar 

  109. Prabhakaran G, Murugan R (2013) Room temperature ferromagnetic properties of Cu2O microcrystals. J Alloys Compd 579:572–575

    Article  CAS  Google Scholar 

  110. Ahmed A, Gajbhiye NS, Kurian S (2010) Structural and magnetic properties of self assembled Fe-doped Cu2O nanorods. J Solid State Chem 183:2248–2251

  111. Brandt IS, Lima E Jr, Tumelero MA et al (2011) Magnetic characterization of Co doped Cu2O layers. IEEE Trans Magn 47:2640–2642

  112. Wei M, Braddon N, Zhi D et al (2005) Room temperature ferromagnetism in bulk Mn-doped Cu2O. Appl Phys Lett 86:72514

    Article  CAS  Google Scholar 

  113. Coey JMD, Stamenov P, Gunning RD et al (2010) Ferromagnetism in defect-ridden oxides and related materials. New J Phys 12:53025

    Article  CAS  Google Scholar 

  114. Ruhle S, Anderson AY, Barad HN et al (2012) All-oxide photovoltaics. J Phys Chem Lett 3:3755–3764

    Article  CAS  Google Scholar 

  115. Malerba C, Biccari F, Ricardo CLA et al (2011) Absorption coefficient of bulk and thin film Cu2O. Sol Energy Mater sol Cells 95:2848–2854. doi:10.1016/j.solmat.2011.05.047

    Article  CAS  Google Scholar 

  116. Ismail RA, Ramadhan I, Mustafa A (2005) Growth and characterization of Cu2O films made by rapid thermal oxidation technique. Chin Phys Lett 22:2977–2979

    Article  CAS  Google Scholar 

  117. Olsen LC, Addis FW, Miller W (1982) Experimental and theoretical studies of Cu2O solar cells. Sol Cells 7:247–279

    Article  CAS  Google Scholar 

  118. Olsen LC, Bohara RC, Urie MW (1979) Explanation for low-efficiency Cu2O Schottky-barrier solar cells. Appl Phys Lett 34:47–49

    Article  CAS  Google Scholar 

  119. Katayama J, Ito K, Matsuoka M, Tamaki J (2004) Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition. J Appl Electrochem 34:687–692

    Article  CAS  Google Scholar 

  120. Ishizuka S, Suzuki K, Okamoto Y et al (2004) Polycrystallinen-ZnO/p-Cu2O heterojunctions grown by RF-magnetron sputtering. Phys Status Solidi 1:1067–1070

    Article  CAS  Google Scholar 

  121. Tanaka H, Shimakawa T, Miyata T et al (2004) Electrical and optical properties of TCO-Cu2O heterojunction devices. Thin Solid Films 469:80–85

    Article  CAS  Google Scholar 

  122. Zhu C, Panzer MJ (2015) Synthesis of Zn:Cu2O thin films using a single step electrodeposition for photovoltaic applications. ACS Appl Mater Interfaces 7:5624–5628

    Article  CAS  Google Scholar 

  123. Mcshane CM, Choi K-S (2012) Junction studies on electrochemically fabricated p–n Cu2O homojunction solar cells for efficiency enhancement. Phys Chem Chem Phys 14:6112–6118

    Article  CAS  Google Scholar 

  124. Hsu Y, Wu J, Chen M et al (2015) Fabrication of homojunction Cu2O solar cells by electrochemical deposition. Appl Surf Sci 354:8–13

    Article  CAS  Google Scholar 

  125. Minami T, Nishi Y, Miyata T (2016) Efficiency enhancement using a Zn1-xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Appl Phys Express 9:52301

    Article  CAS  Google Scholar 

  126. Minami T, Yamazaki J, Miyata T (2016) Efficiency enhanced solar cells with a Cu2O homojunction grown epitaxially on p-Cu2O:Na sheets by electrochemical deposition. MRS Commun 6:416–420

    Article  CAS  Google Scholar 

  127. Lee YS, Chua D, Brandt RE et al (2014) Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Adv Mater 26:4704–4710

    Article  CAS  Google Scholar 

  128. Chen X, Lin P, Yan X et al (2015) Three-dimensional ordered ZnO/Cu2O nanoheterojunctions for efficient metal-oxide solar cells. ACS Appl Mater Interfaces 7:3216–3223

    Article  CAS  Google Scholar 

  129. Fujimoto K, Oku T, Akiyama T (2013) Fabrication and characterization of ZnO/Cu2O solar cells prepared by electrodeposition. Appl Phys Express 6:86503

    Article  CAS  Google Scholar 

  130. Musselman KP, Marin A, Schmidt-Mende L, MacManus-Driscoll JL (2012) Incompatible length scales in nanostructured Cu2O solar cells. Adv Funct Mater 22:2202–2208. doi:10.1002/adfm.201102263

    Article  CAS  Google Scholar 

  131. Paracchino A, Brauer JC, Moser J-E, et al (2012) Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy. J Phys Chem C

  132. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  Google Scholar 

  133. Azevedo J, Steier L, Dias P et al (2014) On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy Environ Sci 7:4044–4052

    Article  CAS  Google Scholar 

  134. Azevedo J, Tilley SD, Schreier M et al (2016) Tin oxide as stable protective layer for composite cuprous oxide water-splitting photocathodes. Nano Energy 24:10–16

    Article  CAS  Google Scholar 

  135. Morales-Guio CG, Tilley SD, Vrubel H et al (2014) Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat Commun 5:3059

    Article  CAS  Google Scholar 

  136. Jiang T, Xie T, Yang W et al (2013) Photoelectrochemical and photovoltaic properties of p−n Cu2O homojunction films and their photocatalytic performance. J Phys Chem C 117:4619–4624

    Article  CAS  Google Scholar 

  137. Paracchino A, Mathews N, Hisatomi T et al (2012) Ultrathin films on copper(I) oxide water splitting photocathodes: a study on performance and stability. Energy Environ Sci 5:8673–8681

    Article  CAS  Google Scholar 

  138. Qi H, Wolfe J, Fichou D, Chen Z (2016) Cu2O photocathode for low bias photoelectrochemical water splitting enabled by NiFe-layered double hydroxide co-catalyst. Sci Report 6:30882

    Article  CAS  Google Scholar 

  139. Tilley SD, Schreier M, Azevedo J et al (2014) Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv Funct Mater 24:303–311

    Article  CAS  Google Scholar 

  140. Yang Y, Xu D, Wu Q, Diao P (2016) Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci Report 6:35158

    Article  CAS  Google Scholar 

  141. Paracchino A, Laporte V, Sivula K et al (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461

    Article  CAS  Google Scholar 

  142. Wu L, Tsui L, Swami N, Zangari G (2010) Photoelectrochemical stability of electrodeposited Cu2O films. J Phys Chem C 114:11551–11556

    Article  CAS  Google Scholar 

  143. Le M, Ren M, Zhang Z et al (2011) Electrochemical reduction of CO2 to CH3OH at copper oxide surfaces. J Electrochem Soc 158:E45–E49

    Article  CAS  Google Scholar 

  144. Li CW, Kanan MW (2012) CO2 reduction at low overpotential on cu electrodes resulting from the reduction of thick Cu2O films. J am Chem Soc 134:7231–7234

    Article  CAS  Google Scholar 

  145. Ghadimkhani G, de Tacconi NR, Chanmanee W et al (2013) Efficient solar photoelectrosynthesis of methanol from carbon dioxide using hybrid CuO–Cu2O semiconductor nanorod arrays. Chem Commun 49:1297–1299

    Article  CAS  Google Scholar 

  146. Zhu W, Michalsky R, Metin Ö et al (2013) Monodisperse Au nanoparticles for selective electrocatalytic reduction of CO2 to CO. J am Chem Soc 135:16833–16836

    Article  CAS  Google Scholar 

  147. Kecsenovity E, Endrödi B, Pápa Z et al (2016) Decoration of ultra-long carbon nanotubes with Cu2O nanocrystals: a hybrid platform for enhanced photoelectrochemical CO2 reduction. J Mater Chem A 4:3139–3147

    Article  CAS  Google Scholar 

  148. Chang X, Wang T, Zhang P et al (2016) Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products. Angew Chem 128:8986–8991

    Article  Google Scholar 

  149. Delatorre RG, Munford ML, Stenger V et al (2006) Electrodeposited p -type magnetic metal-base transistor. J Appl Phys 99:2004–2007

    Article  CAS  Google Scholar 

  150. Van DS, Jiang X, Parkin SSP (2003) Nonmonotonic bias voltage dependence of the magnetocurrent in GaAs-based magnetic tunnel transistors. Phys Rev Lett 90:197203

    Article  CAS  Google Scholar 

  151. Fabian J, Žutic I (2004) Spin-polarized current amplification and spin injection in magnetic bipolar transistors. Phys Rev B 69:115314

    Article  CAS  Google Scholar 

  152. Rudolph J, Hägele D, Gibbs HM et al (2003) Laser threshold reduction in a spintronic device. Appl Phys Lett 82:4516–4518

    Article  CAS  Google Scholar 

  153. Žutic I, Fabian J, Das SS (2002) Spin-polarized transport in inhomogeneous magnetic semiconductors: theory of magnetic/nonmagnetic p-n junctions. Phys Rev Lett 88:66603

    Article  CAS  Google Scholar 

  154. Datta S, Das B (1990) Electronic analog of the electro-optic modulator. Appl Phys Lett 56:665–667

    Article  CAS  Google Scholar 

  155. Schmidt G, Ferrand D, Molenkamp LW et al (2000) Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys Rev B 62:R4790–R4793

    Article  CAS  Google Scholar 

  156. Chen CH, Niu H, Hsieh HH et al (2009) Fabrication of ferromagnetic (Ga,Mn)As by ion irradiation. J Magn Magn Mater 321:1130–1132

    Article  CAS  Google Scholar 

  157. Jungwirth T, Wang KY, Mašek J et al (2005) Prospects for high temperature ferromagnetism in (Ga,Mn)As semiconductors. Phys Rev B 72:165204

    Article  CAS  Google Scholar 

  158. Ohno H (1998) Making nonmagnetic semiconductors ferromagnetic. Science 281(80):951–956

    Article  CAS  Google Scholar 

  159. Zhang H, Zhu Q, Zhang Y et al (2007) One-pot synthesis and hierarchical assembly of hollow Cu2O microspheres with nanocrystals-composed porous multishell and their gas-sensing properties. Adv Funct Mater 17:2766–2771

    Article  CAS  Google Scholar 

  160. Liu J, Wang S, Wang Q, Geng B (2009) Microwave chemical route to self-assembled quasi-spherical Cu2O microarchitectures and their gas-sensing properties. Sensors Actuators B Chem 143:253–260

    Article  CAS  Google Scholar 

  161. Shishiyanu ST, Shishiyanu TS, Lupan OI (2006) Novel NO2 gas sensor based on cuprous oxide thin films. Sensors Actuators B 113:468–476

    Article  CAS  Google Scholar 

  162. Yan D, Li S, Hu M et al (2016) Electrochemical synthesis and the gas-sensing properties of the Cu2O nanofilms/porous silicon hybrid structure. Sensors Actuators B Chem 223:626–633

    Article  CAS  Google Scholar 

  163. Zhang J, Liu J, Peng Q et al (2006) Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater 18:867–871

    Article  CAS  Google Scholar 

  164. Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212

    Article  CAS  Google Scholar 

  165. Pagare PK, Torane AP (2016) Band gap varied cuprous oxide (Cu2O) thin films as a tool for glucose sensing. Microchim Acta 183:2983–2989

    Article  CAS  Google Scholar 

  166. Yao H, Zeng X, Zhang D et al (2013) Shape-controlled synthesis of Cu2O microstructures at glassy carbon electrode by electrochemical method for nonenzymatic glucose sensor. Int J Electrochem Sci 8:12184–12191

    CAS  Google Scholar 

  167. Zhong J-H, Li G-R, Wang Z-L et al (2011) Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application. Inorg Chem 50:757–763

    Article  CAS  Google Scholar 

  168. Fong DS, Aiello L, Gardner TW et al (2004) Retinopathy in diabetes. Diabetes Care 27:S84–S87

    Article  Google Scholar 

  169. Borgohain K, Murase N, Mahamuni S (2002) Synthesis and properties of Cu2O quantum particles. J Appl Phys 92:1292–1297

    Article  CAS  Google Scholar 

  170. Yin M, Wu C-K, Lou Y et al (2005) Copper oxide nanocrystals. J am Chem Soc 127:9506–9511

    Article  CAS  Google Scholar 

  171. Xu H, Wang W, Zhu W (2006) Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J Phys Chem B 110:13829–13834

    Article  CAS  Google Scholar 

  172. Kuo CH, Chen CH, Huang MH (2007) Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv Funct Mater 17:3773–3780

    Article  CAS  Google Scholar 

  173. Zhang L, Blom DA, Wang H (2011) Au-Cu2o core-shell nanoparticles: a hybrid metal-semiconductor heteronanostructure with geometrically tunable optical properties. Chem Mater 23:4587–4598

    Article  CAS  Google Scholar 

  174. Chang Y, Teo JJ, Zeng HC (2005) Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21:1074–1079

    Article  CAS  Google Scholar 

  175. Xu H, Wang W (2007) Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall. Angew Chem Int Ed 46:1489–1492

    Article  CAS  Google Scholar 

  176. Yu H, Yu J, Liu S, Mann S (2007) Template-free hydrothermal synthesis of CuO/ Cu2O composite hollow microspheres. Chem Mater 19:4327–4334

    Article  CAS  Google Scholar 

  177. Tan Y, Xue X, Peng Q et al (2007) Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett 7:3723–3728

    Article  CAS  Google Scholar 

  178. Wang W, Wang G, Wang X et al (2002) Synthesis and characterization of Cu2O nanowires by a novel reduction route. Adv Mater 14:67–69

    Article  CAS  Google Scholar 

  179. Ko E, Choi J, Okamoto K et al (2006) Cu2O nanowires in an alumina template: electrochemical conditions for the synthesis and photoluminescence characteristics. ChemPhysChem 7:1505–1509

    Article  CAS  Google Scholar 

  180. Cui J, Gibson UJ (2010) A simple two-step electrodeposition of Cu2O/ZnO Nanopillar solar cells. J Phys Chem C 114:6408–6412

    Article  CAS  Google Scholar 

  181. Musselman KP, Wisnet A, Iza DC et al (2010) Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells. Adv Mater 22:E254–E258

    Article  CAS  Google Scholar 

  182. Tsui L, Wu L, Swami N, Zangari G (2012) Photoelectrochemical performance of electrodeposited Cu2O on TiO2 nanotubes. ECS J Solid State Sci Technol 1:D15–D19

    CAS  Google Scholar 

  183. Santamaria M, Conigliaro G, Di FF, Di QF (2014) Photoelectrochemical evidence of Cu2O/TiO2 nanotubes hetero-junctions formation and their physicochemical characterization. Electrochim Acta 144:315–323

    Article  CAS  Google Scholar 

  184. Zhang J, Wang Y, Yu C et al (2014) Enhanced visible-light photoelectrochemical behaviour of heterojunction composite with Cu2O nanoparticles-decorated TiO2 nanotube arrays. New J Chem 38:4975–4984

    Article  CAS  Google Scholar 

  185. Luo J, Steier L, Son M et al (2016) Cu2O nanowire photocathodes for efficient and durable solar water splitting. Nano Lett 16:1848–1857

    Article  CAS  Google Scholar 

  186. Xu Q, Qian X, Qu Y et al (2016) Electrodeposition of Cu2O nanostructure on 3D cu micro-cone arrays as photocathode for Photoelectrochemical water reduction. J Electrochem Soc 163:H976–H981

    Article  CAS  Google Scholar 

  187. Yoon S, Lim J, Yoo B (2016) Electrochemical synthesis of cuprous oxide on highly conducting metal micro-pillar arrays for water splitting. J Alloys Compd 677:66–71

    Article  CAS  Google Scholar 

  188. Zhang J, Ma H, Liu Z (2017) Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting. Appl Catal B Environ 201:84–91

    Article  CAS  Google Scholar 

  189. Lin C, Lai Y, Mersch D, Reisner E (2012) Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 3:3482–3487

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Brazilian funding agencies FAPESC, FINEP, CAPES, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Pasa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, I.S., Tumelero, M.A., Pelegrini, S. et al. Electrodeposition of Cu2O: growth, properties, and applications. J Solid State Electrochem 21, 1999–2020 (2017). https://doi.org/10.1007/s10008-017-3660-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-017-3660-x

Keywords

Navigation