Skip to main content
Log in

Experimental Study on Photocatalytic Activity of Cu2O/Cu Nanocomposites Under Visible Light

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Cu2O/Cu nanocomposites (NCs) are synthesized using a two-step hydrothermal method, their different phase compositions are obtained by adjusting the reaction time, and then, they are used as photocatalysts to degrade dye Procion Red MX-5B (PR), methylene blue (MB) and methyl orange (MO) under visible-light. Experimental results indicate Cu2O/Cu NCs exhibit a much higher photocatalytic activity than pure Cu2O, they remain almost unchanged in their phase compositions in the long photocatalytic reaction process, except for partial oxidation of particle surface. They still exhibit a high photocatalytic activity even at the end of four photocatalytic reaction cycles. It can therefore be concluded that Cu2O/Cu nanocomposites are good candidates for processing of pollutant water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1999) Chem Rev 595:69–96

    Google Scholar 

  2. Zheng YH, Chen CQ, Zhan YY, Lin XY, Zheng Q, Wei KM, Zhu JF, Zhu YJ (2007) Inorg Chem 46:6675–6682

    Article  CAS  Google Scholar 

  3. Yu JG, Yu XX (2008) Environ Sci Technol 42:4902–4907

    Article  CAS  Google Scholar 

  4. Periyat P, Baiju KV, Mukundan P, Pillai PK, Warrier KGK (2008) Appl Catal A Gen 349:13–19

    Article  CAS  Google Scholar 

  5. Briskman RN (1992) Sol Energy Mater Sol Cells 27:361–368

    Article  CAS  Google Scholar 

  6. Hu CC, Nian JN, Teng HH (2008) Sol Energy Mater Sol Cells 92:1071–1076

    Article  CAS  Google Scholar 

  7. Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R (2006) Appl Phys Lett 88:163502

    Article  Google Scholar 

  8. Ramirez-Ortiz J, Medina-Valtierra TOJ, Acosta-Ortiz SE, Bosch P, Reyes JA, Lara VH (2001) Appl Surf Sci 174:177–184

    Article  CAS  Google Scholar 

  9. Xu HL, Wang WZ, Zhu WJ (2006) Phys Chem B 110:13829–13864

    Article  CAS  Google Scholar 

  10. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Chem Commun 357–358

  11. Barreca D, Fornasiero P, Gasparotto A, Gombac V, Maccato C, Montini T, Tondello E (2009) Chem Sus Chem 2(3):230–233

    CAS  Google Scholar 

  12. Zhang F, Jin R, Chen J, Shao C, Gao W, Li L, Guan NJ (2005) Catal 232:424–431

    Article  CAS  Google Scholar 

  13. Iliev V, Tomova D, Todorovska R, Oliver D, Petrov L, Todorovsky D, Uzunova-Bujnova M (2006) Appl Catal A 313:115–121

    Article  CAS  Google Scholar 

  14. Lam SW, Chiang K, Lim TM, Amal R, Low GKC (2007) Appl Catal B 72:363–372

    Article  CAS  Google Scholar 

  15. Kim HG, Borse PH, Choi W, Lee JS (2005) Angew Chem Int Ed 44:4585–4589

    Article  CAS  Google Scholar 

  16. Sunana K, Watanabe T, Hashimoto K (2003) Environ Sci Technol 37:4785–4789

    Article  Google Scholar 

  17. Sreethawong T, Yoshikawa S (2005) Catal Commun 6:661–668

    Article  CAS  Google Scholar 

  18. Wang LS, Deng JC, Yang F, Chen T (2008) Mater Chem Phys 108:165–169

    Article  CAS  Google Scholar 

  19. Chang Y, Teo JJ, Zeng HC (2005) Langmuir 21:1074–1079

    Article  CAS  Google Scholar 

  20. Katasifaras A, Spanos N (1999) J Cryst Growth 204:183–190

    Article  Google Scholar 

  21. Yang HM, Yang JO, Tang AD, Xiao Y, Li XW, Donf XD, Yu YM (2006) Mater Res Bull 41:1310–1318

    Article  CAS  Google Scholar 

  22. Borgohain K, Murase N, Mahamuni S (2002) J Appl Phys 92:1292–1297

    Article  CAS  Google Scholar 

  23. Hameed A, Montini T, Gombac V, Fornasiero P (2008) J Am Chem Soc 130:9658–9659

    Article  CAS  Google Scholar 

  24. Yu HG, Yu JG, Liu SW, Mann S (2007) Chem Mater 19:4327–4334

    Article  CAS  Google Scholar 

  25. Zheng YH, Chen CQ, Zhan YY, Lin XY, Zheng Q, Wei KM, Zhu JF (2008) J Phys Chem C 112:10773–10777

    Article  CAS  Google Scholar 

  26. Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K (2007) Inorg Chem 46:6980–6986

    Article  CAS  Google Scholar 

  27. Tang AD, Xiao Y, Yang JO, Nie S (2008) J Alloy Compd 457:447–451

    Article  CAS  Google Scholar 

  28. Yatmaz HC, Akyol A, Bayramoglu M (2004) Ind Eng Chem Res 43:6035–6039

    Article  CAS  Google Scholar 

  29. Ghijsen J, Tjeng LH, van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Phys Rev B 38:11322

    Article  CAS  Google Scholar 

  30. Wang W, Zhan Y, Wang X, Liu Y, Zheng C, Wang G (2002) Mater Res Bull 37:1093–1100

    Article  CAS  Google Scholar 

  31. Espinu JP, Morales J, Barranco A, Caballero A, Holgado JP, Gonzáolez-Elipe AR (2002) J Phys Chem B 106:6921–6929

    Article  Google Scholar 

  32. Balamurugan B, Mehta BR, Shivaprasad SM (2001) Appl Phys Lett 79:3176–3178

    Article  CAS  Google Scholar 

  33. Yin M, Wu C-K, Lou YB, Burda C, Koberstein JT, Zhu Y, O’Brien S (2005) J Am Chem Soc 127:9506–9511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work is funded by the National Natural Science Foundation of China (no. 10504005 and no. 10674034), and Development Program of outstanding Young Teachers in Harbin Institute of Technology (Grant no. HITQNJS.2006.059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguo Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Liu, Z., Wang, H. et al. Experimental Study on Photocatalytic Activity of Cu2O/Cu Nanocomposites Under Visible Light. Catal Lett 132, 75–80 (2009). https://doi.org/10.1007/s10562-009-0063-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-009-0063-3

Keywords

Navigation