Skip to main content
Log in

Features of phenol degradation in aqueous solution in dielectric-barrier discharge in oxygen

  • Plasma Chemistry
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of phenol degradation in aqueous solution in an atmospheric-pressure dielectric-barrier discharge in oxygen at different power inputs to the discharge has been investigated. On the basis of these data, the energy yields of degradation and their dependence on the discharge parameters and initial concentration have been determined. The problem of comparing the energy efficiencies of different types of discharges has been discussed. The decomposition of phenol has been shown to result in the formation of carboxylic acids and aldehydes in the solution and carbon dioxide in the gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, Y., Cho, Y.I., and Friedman, A., Plasma Discharge in Liquid: Water Treatment and Applications Boca Raton: CRC, 2012.

    Google Scholar 

  2. Bobkova, E.S., Grinevich, V.I., Isakina, A.A., and Rybkin, V.V., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, no. 6, p. 3.

    CAS  Google Scholar 

  3. Zhang, J., Chen, J., and Li, X., J. Water Resour. Prot., 2009, vol. 2, no. 2, p. 99.

    Article  Google Scholar 

  4. Lukes, P. and Locke, B.R., J. Phys. D: Appl. Phys, 2005, vol. 38, no. 22, p. 4074.

    Article  CAS  Google Scholar 

  5. Yan, J.H., Du, Ch.M., Li, X.D., Cheron, B.G., Ni, M.J., and Cen, K.F., Plasma Chem. Plasma Process., 2006, vol. 26, p. 31.

    Article  CAS  Google Scholar 

  6. Gao, J., Plasma Sources Sci. Technol., 2003, vol. 12, no. 4, p. 533.

    Article  CAS  Google Scholar 

  7. Ognier, S., Iya-sou, D., Fourmond, C., and Cavadias, S., Plasma Chem. Plasma Process., 2009, vol. 29, no. 4, p. 261.

    Article  CAS  Google Scholar 

  8. Grabowski, L.R., Veldhusen, E.M., Pemen, A.J.M., and Rutgers, W.R., Plasma Chem. Plasma Process., 2006, vol. 26, no. 1, p. 3.

    Article  CAS  Google Scholar 

  9. Malik, M.A., Plasma Chem. Plasma Process., 2010, vol. 30, no. 1, p. 21.

    Article  CAS  Google Scholar 

  10. Wang, L., Plasma Chem. Plasma Process., 2009, vol. 29, p. 241.

    Article  CAS  Google Scholar 

  11. Janca, S., Kuzmin, A., Maximov, A., Titova, Yu., and Czernichowski, A., Plasma Chem. Plasma Process., 1999, vol. 19, p. 53.

    Article  CAS  Google Scholar 

  12. Bruggeman, P., Liu, J., Degroote, J., Kong, M.G., Vierendeels, J., and Leys, C., J. Phys. D: Appl. Phys, 2008, vol. 41, p. 215201.

    Article  Google Scholar 

  13. Shutov, D.A., Isakina, A.A., Konovalov, A.S., and Bobkova, E.S., High Energy Chem., 2013, vol. 47, no. 4, p. 203.

    Article  Google Scholar 

  14. Even-Ezra, I., Mizraki, A., Gerrity, D., Snyder, S., Salveson, A., and Lanav, O., Desalin. Water Treat., 2009, vol. 11, p. 236.

    Article  CAS  Google Scholar 

  15. Liu, Y. and Jiang, X., Plasma Chem. Plasma Process., 2008, vol. 28, no. 1, p. 15.

    Article  CAS  Google Scholar 

  16. Lukes, P. and Locke, B.R., J. Phys. D: Appl. Phys, 2005, vol. 38, no. 22, p. 4074.

    Article  CAS  Google Scholar 

  17. Jiang, B., Zheng, J., Qui, Sh., Wu, M., Zhang, Q., Yan, Y., and Xue, Q., Chem. Eng. J., 2014, vol. 236, no. 1, p. 348.

    Article  CAS  Google Scholar 

  18. Bobkova, E.S., Grinevich, V.I., Ivantsova, N.A., and Rybkin, V.V., Plasma Chem. Plasma Process., 2012, vol. 32, no. 4, p. 703.

    Article  CAS  Google Scholar 

  19. Simonov, V.A., Nekhorosheva, E.V., and Zavorovskaya, N.A., Analiz vozdushnoi sredy pri pererabotke polimernykh materialov (Air Analysis upon Reprocessing of Polymer Materials), Leningrad: Khimiya, 1988.

    Google Scholar 

  20. Reid, R.C. and Sherwood, T.K. The Properties of Gases and Liquids. Their Estimation and Correlation, New York: McGraw-Hill, 1966.

    Google Scholar 

  21. Bobkova, E.S. and Rybkin, V.V., Teplofiz. Vys. Temp., 2014, vol. 53, no. 3, p. 25.

    Google Scholar 

  22. Tomizawa, S. and Tezuka, M., Plasma Chem. Plasma Process., 2007, vol. 27, no. 4, p. 486.

    Article  CAS  Google Scholar 

  23. Locke, B.R. and Shih, K.Ya., Plasma Sources Sci. Technol., 2011, vol. 20, no. 3, p. 034006.

    Article  Google Scholar 

  24. Mansergas, A. and Anglada, M., J. Phys. Chem. A, 2006, vol. 110, no. 11, p. 4001.

    Article  CAS  Google Scholar 

  25. Eiteneer, B., Yu, C.L., Goldenberg, M., and Frenklash, M., J. Phys. Chem. A, 1998, vol. 102, no. 27, p. 5196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Isakina.

Additional information

Original Russian Text © E.S. Bobkova, A.A. Isakina, A.I. Shishkin, N.N. Kuznets, A.M. Morev, 2015, published in Khimiya Vysokikh Energii, 2015, Vol. 49, No. 1, pp. 71–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkova, E.S., Isakina, A.A., Shishkin, A.I. et al. Features of phenol degradation in aqueous solution in dielectric-barrier discharge in oxygen. High Energy Chem 49, 68–71 (2015). https://doi.org/10.1134/S0018143915010038

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143915010038

Keywords

Navigation