Skip to main content
Log in

Influence of Various Solid Catalysts on the Destruction Kinetics of Sodium Lauryl Sulfate in Aqueous Solutions by DBD

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The destruction kinetics of sodium lauryl sulfate (anionic surfactant) in water solutions as well as the formation kinetics of destruction products under the action of an oxygen dielectric barrier discharge at atmospheric pressure both in the presence and in the absence of TiO2, NiO and Ag2O catalysts was studied. As it turned out in all cases the main decomposition products were carboxylic acids, aldehydes and carbon dioxide. The catalysts application was shown to result both in the increase of the decomposition efficiency and in a change in the ratio and yields of decomposition products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Janca J, Kuzmin S, Maximov A, Titova J, Czernichowski A (1999) Plasma Chem Plasma Process 19(1):53–67

    Article  Google Scholar 

  2. Malic MA (2003) Plasma Sour Sci Tech 12(1):26–33

    Article  Google Scholar 

  3. Magureanu M, Mandache NB, Parvulescu VI (2007) Plasma Chem Plasma Process 27(5):589–598

    Article  Google Scholar 

  4. Tomizawa S, Tezuka M (2007) Plasma Chem Plasma Process 27(4):486–495

    Article  Google Scholar 

  5. Grymonpre DR, Sharma AK, Finney WC, Locke BR (2001) Chem Eng J 82(1–3):189–207

    Article  Google Scholar 

  6. Bubnov AG, Burova EY, Grinevich VI, Rybkin VV, Kim JK, Choi HS (2007) Plasma Chem Plasma Process 27(2):177–187

    Article  Google Scholar 

  7. Ogmer S, Iya-sou D, Fourmond C, Cavadias S (2009) Plasma Chem Plasma Process 29(4):261–273

    Article  Google Scholar 

  8. Qu GZ, Lu N, Li J, Lu N, Wu Y, Li GF, Duan L (2009) J Hazard Mater 172(1):472–478

    Article  Google Scholar 

  9. Wang L (2009) Plasma Chem Plasma Process 29(3):241–250

    Article  ADS  Google Scholar 

  10. Yasuoka K, Sasaki K, Hayashi R (2011) Plasma Sources Sci Tech 20:034009

    Google Scholar 

  11. Njoyin E, Ghogomu P, Laminsi S, Nzali S, Doubla A, Brisset JL (2009) Ind Eng Chem Res 48(22):9773–9780

    Article  Google Scholar 

  12. Grinevich VI, Kvitkova EY, Plastinina NA, Rybkin VV (2011) Plasma Chem Plasma Process 31(4):573–583

    Article  Google Scholar 

  13. Even-Ezra I, Mizrahi A, Gerrity D, Snyder S, Salveson A, Lahav O (2009) Desalination Water Treat 11:236–244

    Article  Google Scholar 

  14. Ikchate K, MGE Din (2004) Ozone Sci Eng 26:327–343

  15. Bobkova ES, Grinevich VI, Ivantsova NA, Rybkin VV (2012) Plasma Chem Plasma Process 32(1):97–107

    Article  Google Scholar 

  16. Bandala ER, Pelaez MA, Salgado MJ, Torres L (2008) Hazard Mater 151(2–3):578–584

    Article  Google Scholar 

  17. Bubnov AG, Burova EY, Grinevich VI, Rybkin VV, Kim JK, Choi HS (2006) Plasma Chem Plasma Process 26(1):19–30

    Article  Google Scholar 

  18. Briggs D, Seach MP (1983) Practical surface analysis by auger and X-ray photoelectron spectroscopy. Wiley, Chichester

    Google Scholar 

  19. Moussa D, Brisset JL, Hnatic E, Decobert G (2006) Ind Eng Chem Res 45:30–33

    Article  Google Scholar 

  20. Lide DR (1998–1999) Handbook of chemistry and physics, CRC Press, New York, NY

  21. Bugaenko LT, Kuzmin MG, Polak LS (1993) High energy chemistry. Horwood and Prentice Hall, New York

    Google Scholar 

  22. Bruggeman P, Leys C (2009) J Phys D Appl Phys 42:053002

    Google Scholar 

  23. Okabe H (1978) Photochemistry of small molecules. Wiley-Interscience, New York

    Google Scholar 

  24. Titov VA, Rybkin VV, Smirnov SA, Kulentsan AN, Choi HS (2006) Plasma Chem Plasma Process 26(6):543–555

    Article  Google Scholar 

  25. Locke BR, Shih KY (2011) Plasma Sour Sci Technol 20(3):034006

    Article  ADS  Google Scholar 

  26. Thagard SM, Takashima K, Mizuno A (2009) Plasma Chem Plasma Process 29(6):455–473

    Article  Google Scholar 

  27. Mok YS, Jo JO, Lee HJ, Ahn HT, Kim JT (2007) Plasma Chem Plasma Process 27(1):51–64

    Article  Google Scholar 

  28. Mededovic S, Locke BR (2006) Appl Catal B 67:149–159

    Article  Google Scholar 

  29. Morinaga K (1962) Bull Chem Soc Jpn 35:345–348

    Article  Google Scholar 

  30. Morinaga K (1962) Bull Chem Soc Jpn 35:625–626

    Article  Google Scholar 

  31. Lukes P, Locke BR (2005) J Phys D Appl Phys 38(22):4074–4081

    Article  ADS  Google Scholar 

  32. Grinevich VI, Plastinina NA, Rybkin VV, Bubnov AG (2009) High Energy Chem 43(2):138–142

    Article  Google Scholar 

  33. Bobkova ES, Isakina AA, Grinevich VI, Rybkin VV (2012) Russian J Appl Chem 85(1):75–79

    Article  Google Scholar 

  34. Bobkova ES, Grinevich VI, Isakina AA, Rybkin VV (2011) Izv Vyssh Uchebn Zaved Khim Khim Tekhol 54(6):3–17 (in Russian)

    Google Scholar 

  35. Nikiforov A, Xiong Q, Britun N, Snyders R, Lu XP, Leys C (2011) Appl Phys Express 4:026102

    Google Scholar 

  36. Gangal U, Srivastava M, Sen Gupta SK (2010) Plasma Chem Plasma Process 30(2):299–309

    Article  Google Scholar 

  37. Kanazawa S, Kawano H, Watanabe S, Furuki T, Akamine S, Ishiki R, Ohkubo T, Kocik M, Mizeraczyk J (2011) Plasma Sour Sci Technol 20(3):034010

    Google Scholar 

  38. Matsui Y, Takeuchi N, Sasaki K, Hayashi R, Yasuoka K (2011) Plasma Sour Sci Technol 20(3):034015

    Google Scholar 

  39. Grabowski LR, Van Veldhuizen EM, Pemen AJM, Rutgers WR (2006) Plasma Chem Plasma Process 26(1):3–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Rybkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobkova, E.S., Grinevich, V.I., Ivantsova, N.A. et al. Influence of Various Solid Catalysts on the Destruction Kinetics of Sodium Lauryl Sulfate in Aqueous Solutions by DBD. Plasma Chem Plasma Process 32, 703–714 (2012). https://doi.org/10.1007/s11090-012-9373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9373-0

Keywords

Navigation