Skip to main content
Log in

Kinetics of 1,4-Dichlorobenzene Decomposition in an Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

  • PLASMA CHEMISTRY
  • Published:
High Energy Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of decomposition of 1,4-dichlorobenzene vapor in an atmospheric pressure dielectric barrier discharge in oxygen has been studied. It has been found that the degree of decomposition decreased with the gas flow rate and initial concentration and increased with the discharge power. The apparent rate constants of degradation have been determined, and the energy efficiency of the process has been estimated. The maximum degree of decomposition reached 90%, and the energy yield of decomposition was 2.7 × 10–3 molecules per 100 eV. The main gaseous products of the degradation were СО2, Сl2, carboxylic acids, and aldehydes. The degradation was accompanied by the formation of a polymer film on the reactor walls. Elemental analysis has shown that the film contains C (60 wt %), O (38%), and Cl (2.3%). The IR spectra show that the film contains fragments of carboxylic acids. A comparison of the experimental results with previously obtained data for 2,4-dichlorophenol has shown that the kinetic laws are similar for both of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Boeglin, M.L., Wessels, D., and Henshel, D., Environ. Res., 2006, vol. 100, no. 2, p. 242.

    Article  CAS  Google Scholar 

  2. Huang, B., Lei, C., Wei, C., and Zeng, G., Environ. Int., 2014, vol. 71, p. 118.

    Article  CAS  Google Scholar 

  3. Sultana, S., Vandenbroucke, A.M., Leys, C., Geyter, N.D., and Morent, R., Catalysts, 2015, vol. 5, no. 2, p. 718.

    Article  CAS  Google Scholar 

  4. Thevenet, F., Sivachandiran, L., Guaitella, O., Barakat, C., and Rousseau, A., J. Phys. D: Appl. Phys., 2014, vol. 47, no. 22, p. 224011.

    Article  Google Scholar 

  5. Kim, H.-H., Teramoto, Y., Ogata, A., Takagi, H., and Nanba, T., Plasma Chem. Plasma Process., 2016, vol. 36, no. 1, p. 45.

    Article  Google Scholar 

  6. Krasnoperov, L.N., Krishtova, L.G., Joseph, W., and Bozzelli, J.W., J. Adv. Oxid. Technol., 1997, vol. 2, no. 1, p. 248.

    CAS  Google Scholar 

  7. Indarto, A., Environ. Technol., 2011, vol. 33, nos. 4–6, p. 663.

    Article  Google Scholar 

  8. Marotta, E., Scorrano, G., and Paradisi, C., Plasma Process. Polym., 2005, vol. 2, no. 3, p. 209.

    Article  CAS  Google Scholar 

  9. Gushchin, A.A., Grinevich, V.I., Kozlov, A.A., Kvitkova, E.Yu., Shutov, D.A., and Rybkin, V.V., Plasma Chem. Plasma Process., 2017, vol. 37, no. 5, p. 1331.

    Article  CAS  Google Scholar 

  10. Gushchin, A.A., Grinevich, V.I., Shulyk, V.Ya., Kvitkova, E.Yu., and Rybkin, V.V., Plasma Chem. Plasma Process., 2018, vol. 38, no. 1, p. 123.

    Article  CAS  Google Scholar 

  11. Bobkova, E.S. and Rybkin, V.V., Plasma Chem. Plasma Process., 2015, vol. 35, no. 1, p. 133.

    Article  CAS  Google Scholar 

  12. Malik, M.A., Plasma Chem. Plasma Process., 2010, vol. 30, no. 1, p. 21.

    Article  CAS  Google Scholar 

  13. GOST R (Russian State Standard) 55227-2012: Water: Methods for Determination of Formaldehyde Content, Moscow: Standartinform, 2008.

  14. Simonov, V.A., Nekhorosheva, E.V., and Zavorovskaya, N.A., Analiz vozdushnoi sredy pri pererabotke polimernykh materialov (Analysis of the Air Medium during Processing of Polymer Materials), Leningrad: Khimiya, 1988.

  15. Bobkova, E.S., Khodor, Yu.V., Kornilova, O.N., and Rybkin, V.V., High Temp, 2014, vol. 52, no. 4, p. 511.

    Article  CAS  Google Scholar 

  16. Bellamy, L.J., The Infrared Spectra of Complex Molecules, London: Chapman and Hall, 1980.

    Book  Google Scholar 

  17. Bubnov, A.G., Grinevich, V.I., Aleksandrova, S.N., and Kostrov, V.V., High Energy Chem., 1997, vol. 31, no. 4, p. 268.

    Google Scholar 

  18. Boganov, S.E., Kudryashov, S.V., Ryabov, A.Yu., Suslov, A.I., Rynin, S.S., Egorov, M.P., and Nefedov, O.M., Plasma Chem. Plasma Process., 2014, vol. 34, no. 6, p. 1345.

    Article  CAS  Google Scholar 

  19. Yasuda, H.K., Plasma Polymerization, New York: Academic, 1985.

    Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation, project no. 3.1371.2017/4.6, and the Russian Foundation for Basic Research, grant no. 18-08-01239 A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Gushchin or V. V. Rybkin.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gushchin, A.A., Grinevich, V.I., Kozlov, A.A. et al. Kinetics of 1,4-Dichlorobenzene Decomposition in an Atmospheric Pressure Dielectric Barrier Discharge in Oxygen. High Energy Chem 54, 64–68 (2020). https://doi.org/10.1134/S0018143920010063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018143920010063

Keywords:

Navigation