Skip to main content
Log in

Model of quiescent prominence with the helical magnetic field

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

A new exact analytical solution of the magnetohydrostatic problem describes the equilibrium of a solitary, dense-cool solar filament maintained against the gravity by magnetic force in hot solar corona at heights up to 20–40 Mm. The filament is assumed to be uniform along the axis (the translation symmetry). The magnetic field of the filament has the helical structure (magnetic flux rope) with a typical strength of a few Gauss in the region of minimal temperature (about 4000 K). The model can be applied to the quiescent prominence of both normal and inverse magnetic polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aschwanden, M.J., Physics of the Solar Corona. An Introduction with Problems and Solutions, London: Springer, 2005.

    Google Scholar 

  • Avrett, E.H. and Loeser, R., Models of the solar chromosphere and transition region from Sumer and HRTS observations, Astrophys. J. Suppl. Ser., 2008, pp. 175, pp. 229–276.

    Google Scholar 

  • Cowling, T.G., Magnetohydrodynamics, London: Interscience, 1957; Moscow: Inostrannaya Literatura, 1959.

    Google Scholar 

  • Filippov, B.P., Eruptive prominences, in Plazmennaya geliogeofizika (Plasma Heliogeophysics) Zelenyi, L.M. and Veselovskii, I.S., Eds., Moscow: Fizmatlit, 2008.

    Google Scholar 

  • Kippenhahn, R. and Schlüter, A., Eine Theorie der solaren Filamente, Z. Astrophys., 1957, vol. 43, pp. 36–62.

    Google Scholar 

  • Kuperus, M. and Tandberg-Hanssen, E., the nature of quiescent solar prominences, Sol. Phys., 1967, vol. 2, pp. 39–48.

    Article  Google Scholar 

  • Kuperus, M. and Raadu, M.A., The support of prominences formed in neutral sheets, Astron. Astrophys., 1974, vol. 31, pp. 189–193.

    Google Scholar 

  • Lerche, I. and Low, B.C., Cylindrical prominences and the magnetic influence of the photospheric boundary, Sol. Phys., 1980a, vol. 66, pp. 285–303.

    Article  Google Scholar 

  • Lerche, I. and Low, B.C., On the equilibrium of a cylindrical plasma supported horizontally by magnetic fields in uniform gravity, Sol. Phys., 1980b, vol. 67, pp. 229–243.

    Article  Google Scholar 

  • Low, B.C., Nonisothermal magnetostatic equilibria in a uniform gravity field. 1. Mathematical formulation, Astrophys. J., 1975, vol. 197, pp. 251–255.

    Article  Google Scholar 

  • Low, B.C., The field and plasma configuration of a filament overlying a solar bipolar magnetic region, Astrophys. J., 1981, vol. 246, pp. 538–548.

    Article  Google Scholar 

  • Low, B.C., The vertical filamentary structures of quiescent prominences, Sol. Phys., 1982, vol. 75, pp. 119–131.

    Article  Google Scholar 

  • Low, B.C. and Zhang, M., Magnetostatic structures of the solar corona. III. Normal and inverse quiescent prominences, Astrophys. J., 2004, vol. 609, pp. 1098–1111.

    Article  Google Scholar 

  • Low, B.C. and Petrie, G.J.D., The internal structures and dynamics of solar quiescent prominences, Astrophys. J., 2005, vol. 626, pp. 551–562.

    Article  Google Scholar 

  • Oliver, R., Prominence seismology using small amplitude oscillations, Space Sci. Rev., 2009, vol. 149, pp. 175–197.

    Article  Google Scholar 

  • Parker, E.N., Conversations on Electric and Magnetic Field in the Cosmos, Princeton, 2007.

    Google Scholar 

  • Pikelner, S.B., Origin of quiescent prominences, Sol. Phys., 1971, vol. 17, pp. 44–49.

    Article  Google Scholar 

  • Priest, E.R., Solar Magnetohydrodynamics, Dordrecht: D. Reidel, 1982; Moscow: Mir, 1985.

    Book  Google Scholar 

  • Rust, D.M. and Kumar, A., Helical magnetic fields in filaments, Sol. Phys., 1994, vol. 155, pp. 69–97.

    Article  Google Scholar 

  • Rust, D.M., The helical flux rope structure of prominences, Adv. Space Res., 2003, vol. 32, pp. 1895–1903.

    Article  Google Scholar 

  • Solov’ev, A.A., The structure of solar filaments, Astron. Rep., 2010, vol. 54, pp. 86–95.

    Article  Google Scholar 

  • Solov’ev, A.A., Dissipative collapse of magnetic flux ropes with the force-free inner field, Astron. Rep., 2011, vol. 55, pp. 1025–1037.

    Article  Google Scholar 

  • Tandberg-Hanssen, E., The Nature of Solar Prominences, Dordrecht: Kluwer, 1995.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Solov’ev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solov’ev, A.A., Korolkova, O.A. & Kirichek, E.A. Model of quiescent prominence with the helical magnetic field. Geomagn. Aeron. 56, 1090–1094 (2016). https://doi.org/10.1134/S0016793216080193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793216080193

Navigation