Skip to main content
Log in

On the Origin of Optical Radiation during the Impulsive Phase of Flares on dMe Stars. I. Discussion of Gas Dynamic Models

  • Published:
Astrophysics Aims and scope

In connection with a published critique, the author justifies the use of a motionless homogeneous plane layer of pure hydrogen plasma that is near local thermodynamic equilibrium (LTE) for analyzing the characteristics of the radiation from a chromospheric condensation of thickness ∆z=10 km in a gas dynamic model of stellar flares. It is shown that the shock-wave model of flares proposed by Belova and Bychkov, as opposed to the model of Kostyuk and Pikel’ner, has irremovable internal defects owing to exclusion of the interaction between a thermal wave (temperature jump) and a non-stationary radiative shock. In particular, this model (a) does not make it possible to increase the geometric thickness of a chromospheric condensation owing to divergence of the fronts of the thermal and shock waves during impulsive heating, (b) cannot provide heating of the chromospheres of red dwarfs over significant distances, and (c) predicts Hα line profiles in conflict with observational data. It is argued that: (a) the shock-wave model of Belova and Bychkov represents a development of the kinematic model of solar flares (Nakagawa et al.) and its application to dMe stars, specifically, a study of the radiative response of the chromosphere of a red dwarf to impulsive heating in the simplest gas dynamic statement of the problem (a thermal wave is excluded; a stationary approach is used); (b) in terms of the Kostyuk and Pikel’ner model, the regions behind the stationary shock fronts do not correspond to a chromospheric condensation with time-varying thickness but to zones in which the plasma relaxes to a state of thermal equilibrium. It is emphasized that separation of the Kostyuk and Pikel’ner model into “thermal” and “shock-wave” components is fundamentally impossible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Belova and K. V. Bychkov, Astrophysics 62, 234 (2019).

    ADS  Google Scholar 

  2. S. B. Pikel’ner, Izv. Krymsk. astrofiz. observ. 12, 93 (1954).

  3. E. Morchenko, K. Bychkov, and M. Livshits, Astrophys. Space Sci. 357, 119 (2015).

    ADS  Google Scholar 

  4. B. V. Somov, Proceedings Phys. Inst. Acad. Sci. USSR 110, 57 (1979).

    Google Scholar 

  5. O. M. Belova and K. V. Bychkov, Astrophysics 60, 200 (2017).

    ADS  Google Scholar 

  6. O. M. Belova and K. V. Bychkov, Astrophysics 61, 101 (2018).

    ADS  Google Scholar 

  7. M. M. Katsova, A. G. Kosovichev, and M. A. Livshits, Astrophysics 17, 156 (1981).

    ADS  Google Scholar 

  8. E. S. Morchenko, Astrophysics 59, 475 (2016).

    ADS  Google Scholar 

  9. A. G. Kosovichev, Bull. Crimean Astrophys. Obs. 75, 6 (1986).

    ADS  Google Scholar 

  10. B. V. Somov, Soviet Astron. Lett. 6, 312 (1980).

    ADS  Google Scholar 

  11. V. P. Grinin and V. V. Sobolev, Astrophysics 13, 348 (1977).

    ADS  Google Scholar 

  12. K. C. Gordon and G. E. Kron, Publ. Astron. Soc. Pacif. 61, 210 (1949).

    ADS  Google Scholar 

  13. E. S. Morchenko, arXiv: 1710.08008 [astro-ph. SR] (2017).

  14. M. A. Livshits, O. G. Badalyan, A. G. Kosovichev, et al., Solar Phys. 73, 269 (1981).

    ADS  Google Scholar 

  15. E. S. Morchenko, Candidate’s Dissertation Phys. Math. Sci., M. V. Lomonosov Moscow State University (2017).

  16. M. N. Lovkaya, Astron. Rep. 57, 603 (2013).

    ADS  Google Scholar 

  17. O. M. Belova, K. V. Bychkov, E. S. Morchenko, et al., Astron. Rep. 58, 650 (2014).

    ADS  Google Scholar 

  18. O. P. Shmeleva and S. I. Syrovatskii, Solar Phys. 33, 341 (1973).

    ADS  Google Scholar 

  19. B. V. Somov, S. I. Syrovatskii, and A. R. Spektor, Solar Phys. 73, 145 (1981).

    ADS  Google Scholar 

  20. E. L. E. Eason, M. S. Giampapa, R. R. Radick, et al., Astron. J. 104, 1161 (1992).

    ADS  Google Scholar 

  21. V. V. Sobolev and V. P. Grinin, Astrophysics 38, 15 (1995).

    ADS  Google Scholar 

  22. N. D. Kostyuk and S. B. Pikel’ner, Soviet Astron. 18, 590 (1975).

    ADS  Google Scholar 

  23. A. F. Kowalski and J. C. Allred, Astrophys. J. 852, 61 (2018).

    ADS  Google Scholar 

  24. J. C. Allred, A. F. Kowalski, and M. Carlsson, Astrophys. J. 809, 104 (2015).

    ADS  Google Scholar 

  25. Y. Nakagawa, S. T. Wu, and S. M. Han, Solar Phys. 30, 111 (1973).

    ADS  Google Scholar 

  26. M. K. Druett and V. V. Zharkova, Astron. Astrophys. 610, A68 (2018).

    ADS  Google Scholar 

  27. P. P. Volosevich, S. P. Kurdyumov, L. N. Busurina, et al. USSR Comput. Math. Math. Phys. 3, 204 (1963).

    Google Scholar 

  28. S. A. Kaplan, Interstellar Gas Dynamics , Pergamon Press, Oxford (1966).

    Google Scholar 

  29. A. G. Kosovichev and Yu. P. Popov, USSR Comput. Math. Math. Phys. 19, 168 (1979).

    Google Scholar 

  30. N. D. Kostyuk, Soviet Astron. 20, 206 (1976).

    ADS  Google Scholar 

  31. J. C. Brown, Solar Phys. 31, 143 (1973).

    ADS  Google Scholar 

  32. V. V. Ivanov, Transfer of Radiation in Spectral Lines, U.S. Gov. Print. Off., Washington (1973).

    Google Scholar 

  33. M. A. Livshits, Soviet Astron. 27, 557 (1983).

    ADS  Google Scholar 

  34. S. I. Syrovatskii and O. P. Shmeleva, Soviet Astron. 16, 273 (1972).

    ADS  Google Scholar 

  35. L. C. Johnson, Astrophys. J. 174, 227 (1972).

    ADS  Google Scholar 

  36. R. E. Gershberg and E. E. Shnol’, Izv. Krymsk. astrofiz. observ. 50, 122 (1974).

  37. V. V. Ivanov, Soviet Astron. 16, 91 (1972).

    ADS  Google Scholar 

  38. V. V. Ivanov, Astrophysics 52, 24 (2009).

    ADS  Google Scholar 

  39. A. N. McClymont and R. C. Canfield, Astrophys. J. 265, 483 (1983).

    ADS  Google Scholar 

  40. A. F. Kowalski, PhD thesis, University of Washington (2012).

  41. R. E. Gershberg, Astrophysics 13, 310 (1977).

    ADS  Google Scholar 

  42. G. H. Fisher, R. C. Canfield, and A. N. McClymont, Astrophys. J. 289, 434 (1985).

    ADS  Google Scholar 

  43. R. C. Canfield and R. G. Athay, Solar Phys. 34, 193 (1974).

    ADS  Google Scholar 

  44. R. C. Canfield, Solar Phys. 34, 339 (1974).

    ADS  Google Scholar 

  45. K. Ichimoto and H. Kurokawa, Solar Phys. 93, 105 (1984).

    ADS  Google Scholar 

  46. A. F. Kowalski, Proceedings IAU Symposium No. 320, 259 (2016), arXiv: 1501.05085.

  47. B. E. Zhilyaev, Ya. O. Romanyuk, O. A. Svyatogorov, et al., Astron. Astrophys. 465, 235 (2007).

    ADS  Google Scholar 

  48. M. M. Katsova, Soviet Astron. 25, 197 (1981).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Morchenko.

Additional information

Translated from Astrofizika, Vol. 63, No. 1, pp. 111-130 (February 2020)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morchenko, E.S. On the Origin of Optical Radiation during the Impulsive Phase of Flares on dMe Stars. I. Discussion of Gas Dynamic Models. Astrophysics 63, 91–107 (2020). https://doi.org/10.1007/s10511-020-09617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-020-09617-4

Keywords

Navigation