Skip to main content
Log in

Properties of Radiative Shock Waves in the Atmospheres of Red Dwarf Stars

  • Published:
Astrophysics Aims and scope

The emission from the gas behind the front of a stationary shock wave is calculated for the conditions in the atmospheres of red dwarf stars for velocities u0 from 30 to 100 km/s. Energy exchange between the electron and atom-ion components is taken into account through elastic collisions, free-free, bound-bound, and bound-free collisional and radiative transitions of hydrogen in the radiation field of a star’s photosphere. Cooling by the following chemical elements is included: C, N, O, Mg, Si, S, Ca, and Fe. The following results are obtained: the post-shock gas remains transparent in the optical range of the continuum throughout the emission time; hence, it cannot be a source of the black-body radiation that appears at times during flares. The recombination and bremsstrahlung radiation of the transparent gas, as well as the flux in the Balmer series lines represent a few percent of the energy flux of matter through the viscous jump. The ratio of the fluxes in the spectrum lines and the continuum depends on u0 and on the parameters of the atmosphere. These results are consistent with the idea of multicomponent emission in flares, specifically, line emission is determined by the shock wave in layers above the photosphere, while black-body radiation comes from the photosphere heated by a flux of suprathermal particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. C. Gordon and G. E. Kron, Publ. Astron. Soc. Pacif. 61, 210 (1949).

    Article  ADS  Google Scholar 

  2. V. P. Grinin and V. V. Sobolev, Astrophysics 13, 348 (1977).

    Article  ADS  Google Scholar 

  3. V. P. Grinin and V. V. Sobolev, Astrophysics 28, 208 (1988); 31, 729 (1989).

  4. V. P. Grinin, V. M. Loskutov, and V. V. Sobolev, Astron. zh. 70, 350 (1993).

    ADS  Google Scholar 

  5. A. H. Joy and M. L. Humason, Publ. Astron. Soc. Pacif. 61, 133 (1949).

    Article  ADS  Google Scholar 

  6. R. E. Gershberg and P. F. Chugainov, Astron. zh. 1, 934 (1967).

    Google Scholar 

  7. W. E. Kunkel, Astrophys. J. 161, 503 (1970).

    Article  ADS  Google Scholar 

  8. S. W. Mochnacki and H. Zirin, Astrophys. J. 239, L27 (1980).

    Article  ADS  Google Scholar 

  9. P. F. Chugainov, Izv. KrAO, 44, 3 (1972).

    Google Scholar 

  10. E. P. Abranin, et al., Astrophys. Space Sci. 257, 131 (1998).

    Article  ADS  Google Scholar 

  11. E. P. Abranin, et al., Astron. Astrophys. Trans. 17, 221 (1998).

    Article  ADS  Google Scholar 

  12. M. N. Lovkaya and B. E. Zhilyaev, Izv. KrAO 103, 158 (2007).

    Google Scholar 

  13. M. N. Lovkaya, Izv. KrAO 108, 157 (2012).

    Google Scholar 

  14. M. N. Lovkaya, Astron. zh. 90, 657 (2013).

    ADS  Google Scholar 

  15. A. F. Kowalski, et al., Astrophys. J. Lett. 714, L98 (2010).

    Article  ADS  Google Scholar 

  16. I. A. Klimishin, Tsirkulyar ShAO 6, 13 (1970).

    Google Scholar 

  17. B. W. Bopp and T. J. Moffett, Astrophys. J. 185, 239 (1973).

    Article  ADS  Google Scholar 

  18. V. V. Sobolev and V. P. Grinin, Astrophysics 38, 15 (1995).

    Article  ADS  Google Scholar 

  19. A. F. Kowalski, et al., Astrophys. J. Lett. 837, 125 (2017).

    Article  Google Scholar 

  20. N. D. Kostyuk and S. B. Pikel’ner, Astron. zh. 51, 1002 (1974).

    ADS  Google Scholar 

  21. M. M. Katsova, A. G. Kosovichev, and M. M. Livshits, Astrophysics 17, 156 (1981).

    Article  ADS  Google Scholar 

  22. M. M. Katsova, A. Ya. Boiko, and M. A. Livshits, Astron. Astrophys. 321, 549 (1997).

    ADS  Google Scholar 

  23. E. A. Bruevich and M. A. Livshits, Astron. zh. 70, 1054 (1993).

    ADS  Google Scholar 

  24. J. C. Allred, et al., Astrophys. J. 809, 104 (2015).

    Article  ADS  Google Scholar 

  25. K. V. Bychkov and E. S. Morchenko, Vestnik MGU Seriya 3 Fizika Astronomiya 66, 298 (2011).

    Google Scholar 

  26. L. C. Johnson, Astron. J. 174, 227 (1972).

    Article  ADS  Google Scholar 

  27. J. P. Apruzese, et al., JQSRT, 23, 479 (1981).

    Article  ADS  Google Scholar 

  28. L. M. Biberman, V. S. Vorob’ev, and I. T. Yakubov, Nauka, Moscow (1982).

  29. O. M. Belova and K. V. Bychkov, Astrophysics 61, 224 (2018).

    Article  ADS  Google Scholar 

  30. V. V. Sobolev and V. V. Ivanov, Trudy astronomicheskoi observatorii 19, 3 (1962).

    Google Scholar 

  31. V. Arnaud and R. Rotheflug, Astron. Astrophys. Suppl. Ser. 60, 425 (1985).

    ADS  Google Scholar 

  32. M. J. Shull and M. Van Steenberg, Astron. Astrophys. Suppl. Ser. 55, 15 (1982).

    Google Scholar 

  33. O. M. Belova and K. V. Bychkov, Astrophysics 60, 111 (2017).

    Article  ADS  Google Scholar 

  34. S. Narita, Progress of Theoretical Physics 49, 1911 (1973).

    Article  ADS  Google Scholar 

  35. L. Spitzer, The Physics of Fully Ionized Gases [Russian translation], Izd. inostr. lit. (1957).

  36. S. A. Kaplan and S. B. Pikel’ner, The Interstellar Medium [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  37. O. M. Belova and K. V. Bychkov, Astrophysics 60, 200 (2017).

    Article  ADS  Google Scholar 

  38. G. Bode, Kontinuerliche Absorption von Sternatmospheren, Kiel (1965).

  39. E. Morchenko, K. Bychkov, and M. Livshits, Astrophys. J. Suppl. Ser. 357, Issue 2, article id. 119 (2015).

  40. E. S. Morchenko, Astrophysics 59, 475 (2016).

    Article  ADS  Google Scholar 

  41. A. F. Kowalski, et al., Astrophys. J. Lett. 852, 61 (2018).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Belova.

Additional information

Translated from Astrofizika, Vol. 62, No. 2, pp. 267-284 (May 2019)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belova, O.M., Bychkov, K.V. Properties of Radiative Shock Waves in the Atmospheres of Red Dwarf Stars. Astrophysics 62, 234–250 (2019). https://doi.org/10.1007/s10511-019-09577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10511-019-09577-4

Keywords

Navigation