Skip to main content
Log in

Effect of the sources and evolution of solutions on the composition of metasomatites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The effect of the composition of the sources and the thermal and baric evolution of metasomatic solutions on the character of metasomatic products was studied by numerically simulating solution-rock interaction. The rock sources of the solutions assumed in these simulations were shale, granite, and granodiorite. The relative acidity of the rocks and solutions interacting with them was suggested to estimate using the parameter \(A_R = \log \left( {a_{R^ + } /a_{H^ + } } \right) + \frac{1} {2}\log a_{H_2^O } \) (where R = K, Na). The values of this parameter in rocks differently vary with temperature and pressure and are controlled by buffer equilibria of minerals composing these rocks. The acidity of the solution relative to the source increases at cooling because of the more rapid dissociation of acids than salts and bases. However, the solution can be either more acidic or more alkaline relative to protoliths of other composition. Solutions derived from various sources but cooling in similar regime produce metasomatites of different composition. As the solution cools, feldspar metasomatites can grade into quartz-muscovite ones, which corresponds to the vertical temperature zoning of metasomatic aureoles. The alkalinity of solutions relative to their sources increases at their decompression, but the solutions may be less alkaline relative to protoliths of other composition. In contrast to cooling regime, solutions derived from all of the examined types of sources at decompression produce one of the feldspars and Ca, Mg, and Fe minerals, such as biotite, chlorite, amphibole, and magnetite. Quartz-free varieties of feldspathic metasomatites can be produced at either cooling or decompression but only by alkaline solutions. The potassic or sodic character of feldspathization at decompression depends on the composition of the source and the P-t conditions of solution generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. S. Fyfe, N. J. Price, and A. B. Thompson, Fluids in the Earth’s Crust (Elsevier, Amsterdam, 1978).

    Google Scholar 

  2. J. M. Ferry, “Reaction progress: a monitor of fluid-rock interaction during metamorphic and hydrothermal events,” in Fluid-Rock Interaction during Metamorphism, Ed. by J.V. Walther and B.J. Wood (Springer-Verlag, New York-Berlin, Heidelberg-Tokyo, Moscow, 1986), pp. 60–88.

    Chapter  Google Scholar 

  3. A. B. Thompson and J. A. D. Connolly, “Migration of metamorphic fluid: some aspects of mass and heat transfer,” Earth Sci. Rev. 32, 107–121 (1992).

    Article  Google Scholar 

  4. C. W. Burnham, “Magmas and hydrothermal fluids,” in Geochemistry of Hydrothermal Ore Deposits, Ed. by H.L. Barnes (Wiley, New York, 1979).

    Google Scholar 

  5. J. A. D. Connolly and A. B. Thompson, “Fluid and enthalpy production during regional metamorphism,” Contrib. Mineral. Petrol. 102, 346–366 (1989).

    Article  Google Scholar 

  6. L. M. Cathles, “Scales and effects of fluid flow in the upper crust,” Science 248(4953), 323–329 (1990).

    Article  Google Scholar 

  7. J. J. Ague, “Mass transfer during Barrovian metamorphism of pelites, south-central Connecticut: II. Channelized fluid flow and the growth of staurolite and kyanite,” Am. J. Sci. 294(9), 1061–1134 (1994).

    Article  Google Scholar 

  8. J. D. Webster, “The exsolution of magmatic hydrosaline chloride liquids,” Chem. Geol. 210, 33–48 (2004).

    Article  Google Scholar 

  9. D. S. Korzhinskii, “Open systems with perfectly mobile components and phase rule,” Izv. AN SSSR. Ser. Geol., No. 2, 3–14 (1949).

    Google Scholar 

  10. M. V. Borisov, Geochemical and Thermodynamic Models of Hydrothermal Ore Formation (Nauchnyi mir, Moscow, 2000) [in Russian].

    Google Scholar 

  11. D. V. Grichuk, Thermodynamic Models of Submarine Hydrothermal Systems (Nauchnyi mir, Moscow, 2000) [in Russian].

    Google Scholar 

  12. A. B. Koltsov, “Metasomatic interaction between rock and solution under varying pressure-temperature conditions,” Geochem. Int. 44(7), 656–664 (2006).

    Article  Google Scholar 

  13. A. B. Koltsov, “Hydrothermal mineral deposition and rock alteration in thermobarogradient conditions,” in Rock Chemistry, Ed. by B. Macias and F. Guajardo (Nova, New York, 2011), pp. 43–80.

    Google Scholar 

  14. A. B. Kol’tsov, “Mass Transfer and Replacement of Minerals in the Course of Infiltration Metasomatism,” Geochem. Int. 46(8), 775–788 (2008).

    Article  Google Scholar 

  15. Metasomatism and Metasomatic Rocks, Ed. by V.A. Zharikov and V. L. Rusinov (Nauchnyi mir, Moscow, 1998) [in Russian].

    Google Scholar 

  16. Yu. V. Shvarov, “Algorithmization of the numeric equilibrium modeling of dynamic geochemical processes,” Geochem. Int. 37, 571–576 (1999).

    Google Scholar 

  17. R. G. Berman, “Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2,” J. Petrol. 29, 445–522 (1988).

    Article  Google Scholar 

  18. D. A. Sverjensky, J. J. Hemley, and W. M. D. Angelo, “Thermodynamic assessment of hydrothermal alkali feldspar-mica-aluminosilicate equilibria,” Geochim. Cosmochim. Acta 55(4), 989–1004 (1991).

    Article  Google Scholar 

  19. E. Salje, B. Kuscholke, B. Wruck, and H. Kroll, “Thermodynamics of sodium feldspars. 2. Experimental results and numerical calculations,” Phys. Chem. Miner. 12(2), 99–107 (1985).

    Article  Google Scholar 

  20. M. L. Fuhrman and D. H. Lindsley, “Ternary feldspar modeling and thermometry,” Am. Mineral. 73, 201–215 (1988).

    Google Scholar 

  21. A. B. Kol’tsov, “Conditions of formation of micas and chlorites of variable composition in metasomatic processes,” Geokhimiya, No. 6, 846–857 (1992) [in Russian].

    Google Scholar 

  22. T. J. B. Holland and R. Powell, “An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2,” J. Metamorph. Geol. 8, 89–124 (1990).

    Article  Google Scholar 

  23. J. D. Blundy and T. J. B. Holland, “Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer,” Contrib. Mineral. Petrol. 104, 208–224 (1990).

    Article  Google Scholar 

  24. M. J. Apted and J. G. Liou, “Phase relations among greenschist, epidote-amphibolite, and amphibolite in a basaltic system,” Am. J. Sci. 283-A, 328–354 (1983).

    Google Scholar 

  25. F. S. Spear, “An experimental study of hornblende stability and compositional variability in amphibolites,” Am. J. Sci. 281, 697–734 (1981).

    Article  Google Scholar 

  26. B. R. Tagirov, A. V. Zotov, and N. N. Akinfiev, “Experimental study of dissociation of HCl from 350 to 500°C and from 500 to 2500 bars: thermodynamic properties of HCl 0(aq) ,” Geochim. Cosmochim. Acta 61, 4267–4280 (1997).

    Article  Google Scholar 

  27. V. A. Pokrovskii and H. C. Helgeson, “Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al2O3-H2O-NaCl,” Am. J. Sci. 295, 1255–1342 (1995).

    Article  Google Scholar 

  28. E. L. Shock, D. C. Sassani, M. Willis, and D. A. Sverjensky, “Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes,” Geochim. Cosmochim. Acta 61(5), 907–950 (1997).

    Article  Google Scholar 

  29. D. A. Sverjensky, E. L. Shock, and H. C. Helgeson, “Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb,” Geochim. Cosmochim. Acta 61(7), 1359–1412 (1997).

    Article  Google Scholar 

  30. V. F. Barabanov, Geochemistry (Nedra, Leningrad, 1985) [in Russian].

    Google Scholar 

  31. A. B. Kol’tsov, Metasomatic processes in gold deposits in metaterrigenous sequences (SPbGU, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  32. V. A. Zharikov and B. I. Omel’yanenko, “Classification of metasomatites,” in Metasomatism and Ore Formation (Nauka, Moscow, 1978), pp. 9–28 [in Russian].

    Google Scholar 

  33. V. L. Rusinov, Metasomatic processes in volcanic sequences (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  34. S. A. Bushmin and A. L. Skvirskii, “Physicochemical relations of metasomatism with the retrograde stage of regional metamorphism,” in Geology of Metamorphic Complexes (Nauka, Sverdlovsk, 1990), pp. 13–20 [in Russian].

    Google Scholar 

  35. A. B. Kol’tsov, “Hydrothermal mineralization in the fields of temperature and pressure gradients,” Geochem. Int. 48(11), 1097–1111 (2010).

    Article  Google Scholar 

  36. A. A. Marakushev, “Acid-basic properties of minerals and petrochemical calculations,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 5, 3–25 (1973) [in Russian].

    Google Scholar 

  37. Regional Metamorphic-Metasomatic Formations. Principles and Methods of Estimation of Ore Potential of Geological Formations, Ed. by D.V. Rundqvist (Nedra, Leningrad, 1983) [in Russian].

    Google Scholar 

  38. E. V. Plyushchev, O. P. Ushakov, V. V. Shatov, and G. M. Belyaev, Technique of Study of HydrothermalMetasomatic Rocks (Nedra, Leningrad, 1981) [in Russian].

    Google Scholar 

  39. E. M. Spiridonov, I. A. Baksheev, M. V. Seredkin, et al., Gumbeite Formation of the Urals (izd-vo MGU, Moscow, 1997) [in Russian].

    Google Scholar 

  40. I. P. Ivanov, Facies Analysis of Wall-Rock Alterations (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  41. H. C. Helgeson, “Effects of complex formation in flowing fluids on the hydrothermal solubilities of minerals as a function of fluid pressure and temperature in the critical and supercritical regions of the system H2O,” Geochim. Cosmochim. Acta 56(8), 3191–3208 (1992).

    Article  Google Scholar 

  42. V. A. Glebovitskii and S. A. Bushmin, Post-migmatite Metasomatism (Nauka, Leningrad, 1983) [in Russian].

    Google Scholar 

  43. G. P. Zaraiskii, and Yu. B. Shapovalov, Experimental Investigation of Acidic Metasomatism (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  44. Petrographic Code of Russia, Ed. by O.A. Bogatikov and O.V. Petrov (VSEGEI, St. Petersburg, 2008) [in Russian].

    Google Scholar 

  45. J. D. Lowell and J. M. Guilbert, “Lateral and vertical alteration-mineralization zoning in porphyry copper deposits,” Econ. Geol. 65, 373–408 (1970).

    Article  Google Scholar 

  46. V. A. Zharikov, “Problems of Granite Formation,” Vestn. Mosk. Univ., Ser. 4: Geol., No. 6, 3–4 (1987) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Kol’tsov.

Additional information

Original Russian Text © A.B. Kol’tsov, 2015, published in Geokhimiya, 2015, No. 2, pp. 144–161.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kol’tsov, A.B. Effect of the sources and evolution of solutions on the composition of metasomatites. Geochem. Int. 53, 133–149 (2015). https://doi.org/10.1134/S0016702914120040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702914120040

Keywords

Navigation