Skip to main content
Log in

P–T–\(X_{{{\text{CO}}_{2} }}\)–bulk rock composition modeling of garnet decomposition in amphibolite and mafic granulite: tectono-metamorphic insights into the Permian–Triassic orogeny on the eastern margin of the Korean Peninsula

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Garnet amphibolites with relics of mafic granulite occur within the Precambrian Odaesan Complex and the Paleozoic Taebaeksan Basin on the Korean Peninsula. Atoll garnets and symplectites after garnet are locally developed in the mafic rocks. In order to constrain the metamorphic–metasomatic garnet decomposition, we undertook mineral equilibria modeling using pressure (P)–temperature (T)–fluid composition [\(X_{{{\text{CO}}_{2} }}\); CO2/(CO2 + H2O)]–bulk–rock composition (XBC) pseudosections that were calculated in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–TiO2–H2O ± MnO ± Fe2O3 ± CO2 system. The integrated thermodynamic pseudosection modeling successfully reproduced the variations in metamorphic mineral assemblages and the reaction textures produced by metasomatism during the exhumation of the mafic rocks. The peak P–T–\(X_{{{\text{CO}}_{2} }}\) conditions of the mafic granulite and amphibolite were 9.5–11.0 kbar/670–720 °C at \(X_{{{\text{CO}}_{2} }}\) = 0.4–0.5 and 7.0–9.0 kbar/580–630 °C at \(X_{{{\text{CO}}_{2} }}\) = 0.4, respectively. Subsequently, during retrogressive metamorphism at 3.5–6.0 kbar and 470–530 °C in the presence of H2O-dominated fluids, the symplectites and atoll garnets were formed by preferential dissolution and/or resorption. Furthermore, fluid-assisted local variations in rock composition (involving Al3+, Fe2+, and Ca2+) also affected the formation of the metasomatic reaction textures around the garnet porphyroblasts. The peak metamorphism with change of \(X_{{{\text{CO}}_{2} }}\) occurred during the early Triassic (c. 250 Ma), as inferred from U–Pb zircon age data. Taking into account previous metamorphic and provenance studies on the tectonic environment of the eastern margin of the Korean Peninsula, the sub-isothermal decompressional P–T–\(X_{{{\text{CO}}_{2} }}\)XBC path of the amphibolites and mafic granulites resulted from the amalgamation of microcontinents and the Sino–Korean Craton at a trench–arc setting during the Permian–Triassic orogeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Cao D, Cheng H, Zhang L, Wang K (2018) Origin of atoll garnets in ultra-high-pressure eclogites and implications for infiltration of external fluids. J Asian Earth Sci 160:224–238. https://doi.org/10.1016/j.jseaes.2018.04.030

    Article  Google Scholar 

  • Cao W, Gilotti JA, Massonne H, Ferrando S, Foster CT (2019) Partial melting due to breakdown of an epidote-group mineral during exhumation of ultrahigh-pressure eclogite: an example from the North-East Greenland Caledonides. J Metamorph Geol 37:15–39. https://doi.org/10.1111/jmg.12447

    Article  Google Scholar 

  • Carson CJ, Powell R, Clarke GL (1999) Calculated mineral equilibria for eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O: application to the Pouebo Terrane, Pam Peninsula, New Caledonia. J Metamorph Geol 17:9–24. https://doi.org/10.1046/j.1525-1314.1999.00177.x

    Article  Google Scholar 

  • Cheng H, Nakamura E, Kobayashi K, Zhou Z (2007) Origin of atoll garnets in eclogites and implications for the redistribution of trace elements during slab exhumation in a continental subduction zone. Am Mineral 92:1119–1129. https://doi.org/10.2138/am.2007.2343

    Article  Google Scholar 

  • Cheong AC, Jo HJ, Jeong Y-J, Li X-H (2019) Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons. Geol Soc Am Bull 131:609–634. https://doi.org/10.1130/B32021.1

    Article  Google Scholar 

  • Cho D-L (2014) SHRIMP U-Pb zircon geochronology of the Guryong Group in Odesan area, east Gyeonggi Massif, Korea: a new identification of Late Paleozoic strata and its tectonic implication. J Petrol Soci Korea 23:197–208

    Article  Google Scholar 

  • Cho M, Lee Y, Kim T, Cheong W, Kim Y, Lee SR (2017) Tectonic evolution of Precambrian basement massifs and an adjoining fold-and-thrust belt (Gyeonggi Marginal Belt), Korea: an overview. Geosci J 21:845–865

    Article  Google Scholar 

  • Cho D-L, Lee T-H, Takahashi Y, Kato T, Yi K, Lee S, Cheong AC (2021) Zircon U-Pb geochronology and Hf isotope geochemistry of magmatic and metamorphic rocks from the Hida Belt, southwest Japan. Geosci Frontiers 12:101145. https://doi.org/10.1016/j.gsf.2021.101145

    Article  Google Scholar 

  • Choi DK (2019) Evolution of the Taebaeksan Basin, Korea: II, late Paleozoic sedimentation in a retroarc foreland basin and assembly of the proto-Korean Peninsula. Island Arc 28:e12277. https://doi.org/10.1111/iar.12277

    Article  Google Scholar 

  • Connolly JAD (1990) Multivariable phase diagrams; an algorithm based on generalized thermodynamics. Am J Sci 290:666–718. https://doi.org/10.2475/ajs.290.6.666

    Article  Google Scholar 

  • Connolly JAD (2009) The geodynamic equation of state: what and how. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002540

    Article  Google Scholar 

  • Dale J, Powell R, White RW, Elmer FL, Holland TJB (2005) A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. J Metamorph Geol 23:771–791. https://doi.org/10.1111/j.1525-1314.2005.00609.x

    Article  Google Scholar 

  • Dégi J, Abart R, Török K, Bali E, Wirth R, Rhede D (2010) Symplectite formation during decompression induced garnet breakdown in lower crustal mafic granulite xenoliths: mechanisms and rates. Contrib Mineral Petrol 159:293–314. https://doi.org/10.1007/s00410-009-0428-z

    Article  Google Scholar 

  • Dharmapriya PL, Malaviarachchi SPK, Kriegsman LM, Galli A, Dyck B, Sajeev K, Su B-X, Pitawala A (2020) Symplectite growth in the presence of alkaline fluids: evidence from high-aluminous metasediments of the Highland Complex, Sri Lanka. Mineral Petrol 114:515–538. https://doi.org/10.1007/s00710-020-00710-2

    Article  Google Scholar 

  • Ehiro M, Tsujimori T, Tsukada K, Nuramkhaan M (2016) Palaeozoic basement and associated cover. In: Moreno T, Wallis S, Kojima T, Gibbons W (eds) The geology of Japan. Geological Society London, London, pp 25–60

    Google Scholar 

  • Ernst WG, Tsujimori T, Zhang R, Liou JG (2007) Permo-Triassic collision, subduction zone metamorphism, and tectonic exhumation along the East Asian continental margin. Ann Rev Earth Planet Sci 35:73–110

    Article  Google Scholar 

  • Faryad SW, Klápová H, Nosál L (2010) Mechanism of formation of atoll garnet during high-pressure metamorphism. Mineral Mag 74:111–126

    Article  Google Scholar 

  • Forshaw JB, Waters DJ, Pattison DR, Palin RM, Gopon P (2019) A comparison of observed and thermodynamically predicted phase equilibria and mineral compositions in mafic granulites. J Metamorph Geol 37:153–179. https://doi.org/10.1111/jmg.12454

    Article  Google Scholar 

  • Goncalves P, Marquer D, Oliot E, Durand C (2013) Thermodynamic modeling and thermobarometry of metasomatized rocks. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer, Berlin Heidelberg, pp 53–91

    Chapter  Google Scholar 

  • Goscombe BD, Passchier CW, Hand M (2004) Boudinage classification: end-member boudin types and modified boudin structures. J Struct Geol 26:739–763. https://doi.org/10.1016/j.jsg.2003.08.015

    Article  Google Scholar 

  • Hiroi Y (1983) Progressive metamorphism of the Unazuki pelitic schists in the Hida terrane, central Japan. Contrib Mineral Petrol 82:334–350. https://doi.org/10.1007/BF00399711

    Article  Google Scholar 

  • Holland TJB, Powell R (1996) Thermodynamics of order-disorder in minerals: II. Symmetric formalism applied to solid solutions. Am Mineral 81:1425–1437. https://doi.org/10.2138/am-1996-11-1215

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x

    Article  Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383. https://doi.org/10.1111/j.1525-1314.2010.00923.x

    Article  Google Scholar 

  • Hyppolito T, Cambeses A, Angiboust S, Raimondo T, García-Casco A, Juliani C (2019) Rehydration of eclogites and garnet-replacement processes during exhumation in the amphibolite facies. In: Ferrero S, Lanari P, Goncalves P, Grosch EG (eds) Metamorphic geology microscale to mountain belts. Geological Society of London Publications, London, pp 217–239

    Google Scholar 

  • Jamtveit B, Moulas E, Andersen TB, Austrheim H, Corfu F, Petley-Ragan A, Schmalholz SM (2018) High pressure metamorphism caused by fluid induced weakening of deep continental crust. Sci Rep 8:17011. https://doi.org/10.1038/s41598-018-35200-1

    Article  Google Scholar 

  • Kawabata R, Imayama T, Kato T, Oh C, Horie K, Takehara M (2021) Multi-stage metamorphic history of the Oki gneisses in Japan: implications for Paleoproterozoic metamorphism and tectonic correlations in northeastern Asia. J Metamorph Geol. https://doi.org/10.1111/jmg.12627

    Article  Google Scholar 

  • Kim HS (2019) Reassessment of the Pyeongan Supergroup: metamorphism and deformation of the Songrim orogeny. Econ Environ Geol 52:367–379. https://doi.org/10.9719/EEG.2019.52.5.367

    Article  Google Scholar 

  • Kim HS (2012a) Temperature and timing of the mylonitization of the leucocratic granite in the northeastern flank of the Taebaeksan Basin. J Korean Earth Sci 33:434–449. https://doi.org/10.5467/JKESS.2012.33.5.434

    Article  Google Scholar 

  • Kim HS (2012b) P-T modeling of margarite + anorthite-bearing Al-rich metapelites in the Taebaeksan basin, South Korea: implications for accretion-related metamorphism during the Late Permian-Triassic orogeny. Geosci J 16:207–227. https://doi.org/10.1007/s12303-012-0024-5

    Article  Google Scholar 

  • Kim MG, Lee YI (2018) The Pyeongan Supergroup (upper Paleozoic-Lower Triassic) in the Okcheon Belt, Korea: a review of stratigraphy and detrital zircon provenance, and its implications for the tectonic setting of the eastern Sino-Korean Block. Earth Sci Rev 185:1170–1186. https://doi.org/10.1016/j.earscirev.2018.09.006

    Article  Google Scholar 

  • Kim HS, Ree J-H (2010) P-T modeling of kyanite and sillimanite paramorphs growth after andalusite in late Paleozoic Pyeongan Supergroup, South Korea: implication for metamorphism during the Mesozoic tectonic evolution. Lithos 118:269–286. https://doi.org/10.1016/j.lithos.2010.05.005

    Article  Google Scholar 

  • Kim HS, Ree J-H (2013) Permo-Triassic changes in bulk crustal shortening direction during deformation and metamorphism of the Taebaeksan Basin, South Korea using foliation intersection/inflection axes: implications for tectonic movement at the eastern margin of Eurasia during the Songrim (Indosinian) orogeny. Tectonophysics 587:133–145. https://doi.org/10.1016/j.tecto.2012.08.033

    Article  Google Scholar 

  • Kim HS, Yi K (2015) Multiple metamorphic episodes recorded in the Paleozoic Pyeongan Supergroup on the northeastern margin of the Yeongnam massif, South Korea: implications for the Songrim (Indosinian) orogeny. J Asian Earth Sci 113:883–896. https://doi.org/10.1016/j.jseaes.2015.09.012

    Article  Google Scholar 

  • Kim T-S, Oh C-W, Kim J-M (2011) The characteristic of mangerite and gabbro in the Odaesan area and its meaning to the Triassic tectonics of Korean peninsula. J Petrol Society Korea 20:77–98

    Article  Google Scholar 

  • Kim HS, Ree J-H, Kim J (2012) Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny: evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. Inter J Earth Sci 101:483–498. https://doi.org/10.1007/s00531-011-0683-x

    Article  Google Scholar 

  • Kim MG, Lee YI, Choi T, Orihashi Y (2019) The tectonic setting of the eastern margin of the Sino-Korean Block inferred from detrital zircon U-Pb age and Nd isotope composition of the Pyeongan Supergroup (upper Palaeozoic-Lower Triassic), Korea. Geol Mag 156:471–484. https://doi.org/10.1017/S0016756817000899

    Article  Google Scholar 

  • Konrad-Schmolke M, O’Brien PJ, Heidelbach F (2007) Compositional re-equilibration of garnet: the importance of sub-grain boundaries. Euro J Mineral 19:431–438. https://doi.org/10.1127/0935-1221/2007/0019-1749

    Article  Google Scholar 

  • Kunugiza K, Tsujimori T, Kano T (2001) Evolution of the Hida and Hida marginal belt. In: Kano T (ed) ISRGA field workshop guidebook for major geologic units of south-west Japan. Field Science Publisher, Osaka, pp 75–131

    Google Scholar 

  • Kwon YW, Kim HS, Oh CW (1997) Polymetamorphism of the Odesan gneiss complex in the northeastern area of the Kyonggi Massif, Korea. J Petrol Soci Korea 6:226–243

    Google Scholar 

  • Kwon S, Samuel VO, Song Y, Kim SW, Park S-I, Jang Y, Santosh M (2020) Eclogite resembling metamorphic disequilibrium assemblage formed through fluid-induced metasomatic reactions. Sci Rep 10:19869. https://doi.org/10.1038/s41598-020-76999-y

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles; report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineral Mag 61:295–310. https://doi.org/10.1180/minmag.1997.061.405.13

    Article  Google Scholar 

  • Lee YI, Sheen D-H (1998) Detrital modes of the Pyeongan Supergroup (Late Carboniferous-Early Triassic) sandstones in the Samcheog coalfield, Korea: implications for provenance and tectonic setting. Sediment Geol 119:219–238. https://doi.org/10.1016/S0037-0738(98)00053-0

    Article  Google Scholar 

  • Lee BC, Oh CW, Kim TS, Yi K (2016) The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula. Lithos 256–257:109–131. https://doi.org/10.1016/j.lithos.2016.03.019

    Article  Google Scholar 

  • Li Y, Zhao L, Li Z, Luo B, Zheng J, Brouwer FM (2018) Petrology of Garnet amphibolites from the Hualong Group: implications for metamorphic evolution of the Qilian Orogen, NW China. J Earth Sci 29:1102–1115. https://doi.org/10.1007/s12583-018-0850-0

    Article  Google Scholar 

  • Liu P, Massonne H-J, Harlov DE, Jin Z (2019) High-pressure fluid-rock interaction and mass transfer during exhumation of deeply subducted rocks: insights from an eclogite–vein system in the ultrahigh-pressure terrane of the Dabie Shan, China. Geochem Geophys Geosyst 20:5786–5817. https://doi.org/10.1029/2019GC008521

    Article  Google Scholar 

  • Lou Y, Wei C, Liu X, Zhang C, Tian Z, Wang W (2013) Metamorphic evolution of garnet amphibolite in the western Dabieshan eclogite belt, Central China: evidence from petrography and phase equilibria modeling. J Asian Earth Sci 63:130–138. https://doi.org/10.1016/j.jseaes.2012.11.031

    Article  Google Scholar 

  • Marsh JH, Kelly ED (2017) Petrogenetic relations among titanium-rich minerals in an anatectic high-P mafic granulite. J Metamorph Geol 35:717–738. https://doi.org/10.1111/jmg.12252

    Article  Google Scholar 

  • Newton RC, Charlu TV, Kleppa OJ (1980) Thermochemistry of the high structural state plagioclases. Geochim Cosmochim Acta 44:933–941. https://doi.org/10.1016/0016-7037(80)90283-5

    Article  Google Scholar 

  • Newton RC, Touret JLR, Aranovich LY (2014) Fluids and H2O activity at the onset of granulite facies metamorphism. Precam Res 253:17–25. https://doi.org/10.1016/j.precamres.2014.06.009

    Article  Google Scholar 

  • Nijland TG, Harlov DE, Andersen T (2014) The Bamble sector, South Norway: a review. Geosci Front 5:635–658. https://doi.org/10.1016/j.gsf.2014.04.008

    Article  Google Scholar 

  • Oh CW (2006) A new concept on tectonic correlation between Korea, China and Japan: histories from the late Proterozoic to Cretaceous. Gondwana Res 9:47–61. https://doi.org/10.1016/j.gr.2005.06.001

    Article  Google Scholar 

  • Paces JB, Miller JD (1993) Precise U-Pb ages of Duluth complex and related mafic intrusions, Northeastern Minnesota: geochronological insights to physical, petrogenetic, paleomagentic, and tectonomagmatic processes associated with the 1.1 Ga microcontinent rift system. J Geophys Res 98:13997–14013

    Article  Google Scholar 

  • Palin RM, Weller OM, Waters DJ, Dyck B (2016) Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci Front 7:591–607. https://doi.org/10.1016/j.gsf.2015.08.005

    Article  Google Scholar 

  • Pattison DRM (2003) Petrogenetic significance of orthopyroxene-free garnet + clinopyroxene + plagioclase +- quartz-bearing metabasites with respect to the amphibolite and granulite facies. J Metamorph Geol 21:21–34. https://doi.org/10.1046/j.1525-1314.2003.00415.x

    Article  Google Scholar 

  • Percival JA, Fountain DM, Salisbury MH (1992) Exposed crustal cross sections as windows on the lower crust. In: Fountain DM, Aeculus R, Kay RW (eds) Continental lower crust, developments in geotectonics. Elsevier, Amsterdam, pp 317–362

    Google Scholar 

  • Qian JH, Wei CJ (2016) P-T–t evolution of garnet amphibolites in the Wutai-Hengshan area, North China Craton: insights from phase equilibria and geochronology. J Metamorph Geol 34:423–446. https://doi.org/10.1111/jmg.12186

    Article  Google Scholar 

  • Roduit N (2021) JMicroVision: image analysis toolbox for measuring and quantifying components of high-definition images.Version 1.3.4. https://jmicrovision.github.io. Accessed 6 Feb 2021

  • Santos CA, White RW, Moraes R, Szabó GAJ (2021) The gabbro to amphibolite transition along a hydration front. J Metamorph Geol 39:417–442. https://doi.org/10.1111/jmg.12582

    Article  Google Scholar 

  • Santosh M, Tsunogae T, Shimizu H, Dubessy J (2010) Fluid characteristics of retrogressed eclogites and mafic granulites from the Cambrian Gondwana suture zone in southern India. Contrib Mineral Petrol 159:349–369. https://doi.org/10.1007/s00410-009-0431-4

    Article  Google Scholar 

  • Shmulovich KI, Graham CM (2004) An experimental study of phase equilibria in the systems H2O–CO2–CaCl2 and H2O–CO2–NaCl at high pressures and temperatures (500–800 °C, 0.5–0.9 GPa): geological and geophysical applications. Contrib Mineral Petrol 146:450–462. https://doi.org/10.1007/s00410-003-0507-5

    Article  Google Scholar 

  • Spruzeniece L, Piazolo S, Daczko NR, Kilburn MR, Putnis A (2017) Symplectite formation in the presence of a reactive fluid: insights from hydrothermal experiments. J Metamorph Geol 35:281–299. https://doi.org/10.1111/jmg.12231

    Article  Google Scholar 

  • Stewart EM, Ague JJ (2018) Infiltration-driven metamorphism, New England, USA: regional CO2 fluxes and implications for Devonian climate and extinctions. Earth Planet Sci Lett 489:123–134. https://doi.org/10.1016/j.epsl.2018.02.028

    Article  Google Scholar 

  • Takahashi Y, Cho D-L, Mao J, Zhao X, Yi K (2018) SHRIMP U-Pb zircon ages of the Hida metamorphic and plutonic rocks, Japan: implications for late Paleozoic to Mesozoic tectonics around the Korean Peninsula. Island Arc 27:e12220. https://doi.org/10.1111/iar.12220

    Article  Google Scholar 

  • Tedeschi M, Lanari P, Rubatto D, Pedrosa-Soares A, Hermann J, Dussin I, Pinheiro MAP, Bouvier A-S, Baumgartner L (2017) Reconstruction of multiple P-T-t stages from retrogressed mafic rocks: subduction versus collision in the Southern Brasília orogen (SE Brazil). Lithos 294–295:283–303. https://doi.org/10.1016/j.lithos.2017.09.025

    Article  Google Scholar 

  • Touret JLR, Nijland TG (2013) Prograde, peak and retrograde metamorphic fluids and associated metasomatism in upper amphibolite to granulite facies transition zones. In: Harlov DE, Austrheim H (eds) Metasomatism and the chemical transformation of rock. Springer, Berlin Heidelberg, pp 415–469

    Chapter  Google Scholar 

  • Tsujimori T, Liou JG, Ernst WG, Itaya T (2006) Triassic paragonite- and garnet-bearing epidote-amphibolite from the Hida Mountains, Japan. Gondwana Res 9:167–175. https://doi.org/10.1016/j.gr.2005.03.001

    Article  Google Scholar 

  • Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Geosci Front 9:1479–1493

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Yoshida T, Taguchi T, Ueda H, Horie K, Satish-Kumar M (2021) Early carboniferous HP metamorphism in the Hida Gaien Belt, Japan: implications for the Palaeozoic tectonic history of proto-Japan. J Metamorph Geol 39:77–100. https://doi.org/10.1111/jmg.12564

    Article  Google Scholar 

  • Zhao G, Cawood PA, Wilde SA, Lu L (2001) High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: petrology and tectonic implications. J Petrol 42:1141–1170. https://doi.org/10.1093/petrology/42.6.1141

    Article  Google Scholar 

  • Zhao X, Mao J, Ye H, Liu K, Takahashi Y (2013) New SHRIMP U-Pb zircon ages of granitic rocks in the Hida Belt, Japan: implications for tectonic correlation with Jiamushi massif. Island Arc 22:508–521. https://doi.org/10.1111/iar.12045

    Article  Google Scholar 

  • Zheng Y-F (2019) Subduction zone geochemistry. Geosci Front 10:1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1A2C1003840) and a Korea University Grant. The authors thanks two anonymous reviewers for helpful and constructive suggestions that improved the manuscript significantly.

Funding

National Research Foundation of Korea, NRF-2022R1A2C1003840, Hyeong Soo Kim

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeong Soo Kim.

Additional information

Communicated by Timm John.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

410_2022_1952_MOESM1_ESM.xlsx

Supplementary file1 (XLSX 62 KB): Table S1: Analyses of garnet in the amphibolites (samples GY105, GY60, OG87-4M, 5M, 6M, 3R and 1R) and mafic granulite (OG87-7C and 8C) from the Odaesan Complex and Taebaeksan Basin. * Total iron as FeO. F/FM, XAlm, XSpss, XPrp, and XGrs in garnet indicate Fe/(Fe + Mg), Fe/(Fe + Mg + Mn + Ca), Mn/(Fe + Mg + Mn + Ca), Mg/(Fe + Mg + Mn + Ca), and Ca/(Fe + Mg + Mn + Ca), respectively

410_2022_1952_MOESM2_ESM.xlsx

Supplementary file2 (XLSX 61 KB): Table S2: Analyses of plagioclase and k-feldspar in in the amphibolites (samples GY105, GY60, OG87-4M, 5M, 6M, 3R and 1R) and mafic granulite (OG87-7C and 8C) from the Odaesan Complex and Taebaeksan Basin. XAn, XAb, and XOr in plagioclase and k-feldspar represent Ca/(Ca + Na + K), Na/(Ca + Na + K), and K/(Ca + Na + K), respectively

410_2022_1952_MOESM3_ESM.xlsx

Supplementary file3 (XLSX 22 KB): Table S3: Analyses of clinopyroxene in the amphibolite (GY105) and mafic granulite (samples OG87-7C and 8C) from the Odaesan Complex and Taebaeksan Basin. XWo, XEn, and XFs in clinopyroxene represent Ca/(Ca + Mg + Fe), Mg/(Ca + Mg + Fe), and Fe/(Ca + Mg + Fe), respectively

410_2022_1952_MOESM4_ESM.xlsx

Supplementary file4 (XLSX 61 KB): Table S4: Analyses of amphibole in the amphibolites (samples GY105, GY60, GY30, OG87-4M, 5M, 6M, 3R and 1R) and mafic granulite (OG87-7C and 8C) from the Odaesan Complex and Taebaeksan Basin. Fe3+ in amphibole is calculated using 13eCNK of Leake et al. (1997), and XMg = Mg / (Mg+Fe2+)

410_2022_1952_MOESM5_ESM.xlsx

Supplementary file5 (XLSX 32 KB): Table S5: Analyses of titanite, zoisite, ilmenite, magnetite, and calcite in the amphibolites (samples GY105, GY60, GY30, OG87-4M, 5M, 6M, 3R and 1R) and mafic granulite (OG87-7C and 8C) from the Odaesan Complex and Taebaeksan Basin. XCzo = (Al – 2)/(Al – 2 + Fe3++ Mn3+), XEp = (Fe3+)/(Al – 2 + Fe3++ Mn3+), XPmt = (Mn3+)/(Al – 2 + Fe3++ Mn3+)

Supplementary file6 (XLSX 10 KB): Table S6 Solution notation, formulae and model sources for phase diagram calculation

410_2022_1952_MOESM7_ESM.xlsx

Supplementary file7 (XLSX 15 KB): Table S7: SHRIMP U–Pb zircon data from garnet amphibolites (samples GY30 and 105-1) of the Odaesan Complex in the eastern Gyeonggi Massif

Supplementary file8 (XLSX 329 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B.J., Kim, H.S. P–T–\(X_{{{\text{CO}}_{2} }}\)–bulk rock composition modeling of garnet decomposition in amphibolite and mafic granulite: tectono-metamorphic insights into the Permian–Triassic orogeny on the eastern margin of the Korean Peninsula. Contrib Mineral Petrol 177, 89 (2022). https://doi.org/10.1007/s00410-022-01952-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-022-01952-3

Keywords

Navigation