Skip to main content
Log in

Warburg Effect Revisited: Embodiment of Classical Biochemistry and Organic Chemistry. Current State and Prospects

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the primary energy source of the cancer cell is aerobic glycolysis (the Warburg effect). He also postulated the hypothesis about “the prime cause of cancer”, which is a matter of debate nowadays. Contrary to the hypothesis, his discovery was recognized entirely. However, the discovery had almost vanished in the heat of battle about the hypothesis. The prime cause of cancer is essential for the prevention and diagnosis, yet the effects that influence tumor growth are more important for cancer treatment. Due to the Warburg effect, a large amount of data has been accumulated on biochemical changes in the cell and the organism as a whole. Due to the Warburg effect, the recovery of normal biochemistry and oxygen respiration and the restoration of the work of mitochondria of cancer cells can inhibit tumor growth and lead to remission. Here, we review the current knowledge on the inhibition of abnormal glycolysis, neutralization of its consequences, and normalization of biochemical parameters, as well as recovery of oxygen respiration of a cancer cell and mitochondrial function from the point of view of classical biochemistry and organic chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

LDH:

lactate dehydrogenase

pHe :

extracellular pH

pHi :

intracellular pH

References

  1. Warburg, O. (1924) Über den Stoffwechsel der Carcinomzelle [in German], Naturwissenschaften, 12, 1131-1137, https://doi.org/10.1007/BF01504608.

    Article  CAS  Google Scholar 

  2. Warburg, O. (1925) The metabolism of carcinoma cells, J. Cancer Res., 9, 148-163, https://doi.org/10.1158/jcr.1925.148.

    Article  CAS  Google Scholar 

  3. Warburg, O., Wind, F., and Negelein, E. (1927) The metabolism of tumors in the body, J. Gen. Physiol., 8, 519-530, https://doi.org/10.1085/jgp.8.6.519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Warburg, O. H. (1931) Nobel Prize in Medicine 1931. The official website of the Nobel Foundation (URL: http://nobelprize.org/nobel_prizes/medicine/laureates/1931/warburg-bio.html).

  5. Warburg, O. (1956) On the origin of cancer cells, Science, 123, 309-314, https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  Google Scholar 

  6. Warburg, O. (1956) On respiratory impairment in cancer cells, Science, 124, 269-270, https://doi.org/10.1126/science.124.3215.269.

    Article  CAS  PubMed  Google Scholar 

  7. Warburg, O. (2010) The classic: the chemical constitution of respiration ferment, Clin. Orthop. Relat. Res., 468, 2833-2839, https://doi.org/10.1007/s11999-010-1534-y.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Warburg, O. H. (1969) The Prime Cause and Prevention of Cancer, Wurzburg, Verlag K. Trilsch.

  9. Bertram, J. S. (2000) The molecular biology of cancer, Mol. Aspects Med., 21, 167-223, https://doi.org/10.1016/S0098-2997(00)00007-8.

    Article  CAS  PubMed  Google Scholar 

  10. Croce, C. M. (2008) Oncogenes and cancer, New Engl. J. Med., 358, 502-511, https://doi.org/10.1056/NEJMra072367.

    Article  CAS  PubMed  Google Scholar 

  11. Pecorino, L. (2021) Molecular Biology of Cancer: Mechanisms, Targets, and Therapeutics, Oxford University Press, Oxford.

  12. Garber, K. (2004) Energy boost: the warburg effect returns in a new theory of cancer, J. Natl. Cancer Inst., 96, 1805-1806, https://doi.org/10.1093/jnci/96.24.1805.

    Article  PubMed  Google Scholar 

  13. Chance, B. (2005) Was Warburg right? Or was it that simple? Cancer Biol. Ther., 4, 125-126, https://doi.org/10.4161/cbt.4.1.1462.

    Article  PubMed  Google Scholar 

  14. Schulz, T. J., Thierbach, R., Voigt, A., Drewes, G., Mietzner, B., Steinberg, P., Pfeiffer, A. F. H., and Ristow, M. (2006) Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth. Otto Warburg revisited, J. Biol. Chem., 281, 977-981, https://doi.org/10.1074/jbc.M511064200.

    Article  CAS  PubMed  Google Scholar 

  15. Vazquez, A., Liu, J., Zhou, Y., and Oltvai, Z. N. (2010) Catabolic efficiency of aerobic glycolysis: the Warburg effect revisited, BMC Syst. Biol., 4, 1-9, https://doi.org/10.1186/1752-0509-4-58.

    Article  CAS  Google Scholar 

  16. Upadhyay, M., Samal, J., Kandpal, M., Singh, O. V., and Vivekanandan, P. (2013) The Warburg effect: insights from the past decade, Pharmacol. Ther., 137, 318-330, https://doi.org/10.1016/j.pharmthera.2012.11.003.

    Article  CAS  PubMed  Google Scholar 

  17. Potter, M., Newport, E., and Morten, K. J. (2016) The Warburg effect: 80 years on, Biochem. Soc. Trans., 44, 1499-1505, https://doi.org/10.1042/bst20160094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. DeBerardinis, R. J., and Chandel, N. S. (2020) We need to talk about the Warburg effect, Nat. Metabol., 2, 127-129, https://doi.org/10.1038/s42255-020-0172-2.

    Article  Google Scholar 

  19. Vaupel, P., and Multhoff, G. (2021) Revisiting the Warburg effect: historical dogma versus current understanding, J. Physiol., 599, 1745-1757, https://doi.org/10.1113/JP278810.

    Article  CAS  PubMed  Google Scholar 

  20. Gaál, Z. (2021) MicroRNAs and metabolism: revisiting the Warburg effect with emphasis on epigenetic background and clinical applications, Biomolecules, 11, 1531, https://doi.org/10.3390/biom11101531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Basu, S., Kwee, T. C., Surti, S., Akin, E. A., Yoo, D., and Alavi, A. (2011) Fundamentals of PET and PET/CT imaging, Ann. N. Y. Acad. Sci., 1228, 1-18, https://doi.org/10.1111/j.1749-6632.2011.06077.x.

    Article  CAS  PubMed  Google Scholar 

  22. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer (review), Cell, 100, 57-70, https://doi.org/10.1016/S0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  23. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  24. Sonnenschein, C., and Soto, A. M. (2013) The aging of the 2000 and 2011 hallmarks of cancer reviews: a critique, J. Biosci. (Bangalore), 38, 651-663, https://doi.org/10.1007/s12038-013-9335-6.

    Article  CAS  Google Scholar 

  25. Fouad, Y. A., and Aanei, C. (2017) Revisiting the hallmarks of cancer, Am. J. Cancer Res., 7, 1016-1036.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schwartz, L., Supuran, T. C., and Alfarouk, O. K. (2017) The Warburg effect and the hallmarks of cancer, Anticancer Agents Med. Chem., 17, 164-170, https://doi.org/10.2174/1871520616666161031143301.

    Article  CAS  PubMed  Google Scholar 

  27. Caon, I., Bartolini, B., Parnigoni, A., Caravà, E., Moretto, P., Viola, M., Karousou, E., Vigetti, D., and Passi, A. (2020) Revisiting the hallmarks of cancer: the role of hyaluronan, Semin. Cancer Biol., 62, 9-19, https://doi.org/10.1016/j.semcancer.2019.07.007.

    Article  CAS  PubMed  Google Scholar 

  28. Paul, D. (2020) The systemic hallmarks of cancer, J. Cancer Metastas. Treat., 6, 29, https://doi.org/10.20517/2394-4722.2020.63.

    Article  CAS  Google Scholar 

  29. Senga, S. S., and Grose, R. P. (2021) Hallmarks of cancer – the new testament, Open Biol., 11, 200358, https://doi.org/10.1098/rsob.200358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanahan, D. (2022) Hallmarks of cancer: new dimensions, Cancer Discov., 12, 31-46, https://doi.org/10.1158/2159-8290.cd-21-1059.

    Article  CAS  PubMed  Google Scholar 

  31. Ravi, S., Alencar Jr., A. M., Arakelyan, J., Xu, W., Stauber, R., Wang, C.-C. I., Papyan, R., Ghazaryan, N., and Pereira, R. M. (2022) An update to hallmarks of cancer, Cureus, 14, e24803, https://doi.org/10.7759/cureus.24803.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Swain, N., Hosalkar, R., Thakur, M., and Prabhu, A. H. (2022) Hallmarks of Cancer: Its Concept and Critique, in Microbes and Oral Squamous Cell Carcinoma: A Network Spanning Infection and Inflammation (Routray, S., ed.) Springer Nature Singapore, Singapore, pp. 55-68, https://doi.org/10.1007/978-981-19-0592-6_4.

  33. Zhong, Z., Yu, J., Virshup, D. M., and Madan, B. (2020) Wnts and the hallmarks of cancer, Cancer Metastasis Rev., 39, 625-645, https://doi.org/10.1007/s10555-020-09887-6.

    Article  PubMed  Google Scholar 

  34. Blagosklonny, M. V. (2022) Hallmarks of cancer and hallmarks of aging, Aging (Milano), 14, 4176-4187, https://doi.org/10.18632/aging.204082.

    Article  CAS  Google Scholar 

  35. Chitale, D. A. (2022) Hallmarks of Cancer: Molecular Underpinnings, in Cancer Metastasis Through the Lymphovascular System (Leong, S. P., Nathanson, S. D., and Zager, J. S., eds) Springer International Publishing, Cham, pp. 3-14, https://doi.org/10.1007/978-3-030-93084-4_1.

  36. Otto, A. M. (2016) Warburg effect(s) – a biographical sketch of Otto Warburg and his impacts on tumor metabolism, Cancer Metab., 4, 5, https://doi.org/10.1186/s40170-016-0145-9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liberti, M. V., and Locasale, J. W. (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem. Sci., 41, 211-218, https://doi.org/10.1016/j.tibs.2015.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Popov, A. V., and Menchikov, L. G. (2013) The Warburg Effect Is a Guide to Multipurpose Cancer Therapy Including Trace Element Delivery, in Drug Delivery Systems: Advanced Technologies Potentially Applicable in Personalised Treatment (Coelho, J., ed.) Springer, Dordrecht (Netherlands), pp. 255-270, https://doi.org/10.1007/978-94-007-6010-3_9.

  39. Weljie, A. M., and Jirik, F. R. (2011) Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect, Int. J. Biochem. Cell Biol., 43, 981-989, https://doi.org/10.1016/j.biocel.2010.08.009.

    Article  CAS  PubMed  Google Scholar 

  40. Ferreira, L. M. R., Hebrant, A., and Dumont, J. E. (2012) Metabolic reprogramming of the tumor, Oncogene, 31, 3999-4011, https://doi.org/10.1038/onc.2011.576.

    Article  CAS  PubMed  Google Scholar 

  41. Miranda-Galvis, M., and Teng, Y. (2020) Targeting hypoxia-driven metabolic reprogramming to constrain tumor progression and metastasis, Int. J. Mol. Sci., 21, 5487, https://doi.org/10.3390/ijms21155487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dhup, S., Dadhich, R. K., Porporato, P. E., and Sonveaux, P. (2012) Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis, Curr. Pharm. Des., 18, 1319-1330, https://doi.org/10.2174/138161212799504902.

    Article  CAS  PubMed  Google Scholar 

  43. Gao, Y., Zhou, H., Liu, G., Wu, J., Yuan, Y., and Shang, A. (2022) Tumor microenvironment: lactic acid promotes tumor development, J. Immunol. Res., 2022, 3119375, https://doi.org/10.1155/2022/3119375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DeBerardinis, R. J., and Chandel, N. S. (2016) Fundamentals of cancer metabolism, Sci. Adv., 2, e1600200, https://doi.org/10.1126/sciadv.1600200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Martinez-Outschoorn, U. E., Peiris-Pagés, M., Pestell, R. G., Sotgia, F., and Lisanti, M. P. (2017) Cancer metabolism: a therapeutic perspective, Nat. Rev. Clin. Oncol., 14, 11-31, https://doi.org/10.1038/nrclinonc.2016.60.

    Article  CAS  PubMed  Google Scholar 

  46. Stine, Z. E., Schug, Z. T., Salvino, J. M., and Dang, C. V. (2022) Targeting cancer metabolism in the era of precision oncology, Nat. Rev. Drug Discov., 21, 141-162, https://doi.org/10.1038/s41573-021-00339-6.

    Article  CAS  PubMed  Google Scholar 

  47. Counihan, J. L., Grossman, E. A., and Nomura, D. K. (2018) Cancer metabolism: current understanding and therapies, Chem. Rev., 118, 6893-6923, https://doi.org/10.1021/acs.chemrev.7b00775.

    Article  CAS  PubMed  Google Scholar 

  48. Pavlova, N. N., and Thompson, C. B. (2016) The emerging hallmarks of cancer metabolism, Cell Metab., 23, 27-47, https://doi.org/10.1016/j.cmet.2015.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pavlova, N. N., Zhu, J., and Thompson, C. B. (2022) The hallmarks of cancer metabolism: still emerging, Cell Metab., 34, 355-377, https://doi.org/10.1016/j.cmet.2022.01.007.

    Article  CAS  PubMed  Google Scholar 

  50. Martínez-Reyes, I., and Chandel, N. S. (2020) Mitochondrial TCA cycle metabolites control physiology and disease, Nat. Commun., 11, 102, https://doi.org/10.1038/s41467-019-13668-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Flurkey, W. H. (2010) Yield of ATP molecules per glucose molecule, J. Chem. Educ., 87, 271-271, https://doi.org/10.1021/ed800102g.

    Article  CAS  Google Scholar 

  52. Zheng, J. (2012) Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review), Oncol. Lett., 4, 1151-1157, https://doi.org/10.3892/ol.2012.928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pedersen, P. (2007) Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen, J. Bioenerg. Biomembr., 39, 211-222, https://doi.org/10.1007/s10863-007-9094-x.

    Article  CAS  PubMed  Google Scholar 

  54. Moreno-Sánchez, R., Rodríguez-Enríquez, S., Saavedra, E., Marín-Hernández, A., and Gallardo-Pérez, J. C. (2009) The bioenergetics of cancer: is glycolysis the main ATP supplier in all tumor cells? BioFactors, 35, 209-225, https://doi.org/10.1002/biof.31.

    Article  CAS  PubMed  Google Scholar 

  55. Macheda, M. L., Rogers, S., and Best, J. D. (2005) Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer, J. Cell. Physiol., 202, 654-662, https://doi.org/10.1002/jcp.20166.

    Article  CAS  PubMed  Google Scholar 

  56. Luo, X.-M., Zhou, S.-H., and Fan, J. (2010) Glucose transporter-1 as a new therapeutic target in laryngeal carcinoma, J. Int. Med. Res., 38, 1885-1892, https://doi.org/10.1177/147323001003800601.

    Article  CAS  PubMed  Google Scholar 

  57. Pliszka, M., and Szablewski, L. (2021) Glucose transporters as a target for anticancer therapy, Cancers (Basel), 13, 4184, https://doi.org/10.3390/cancers13164184.

    Article  CAS  PubMed  Google Scholar 

  58. Koepsell, H. (2017) The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer, Pharmacol. Ther., 170, 148-165, https://doi.org/10.1016/j.pharmthera.2016.10.017.

    Article  CAS  PubMed  Google Scholar 

  59. Horecker, B. L. (2002) The pentose phosphate pathway, J. Biol. Chem., 277, 47965-47971, https://doi.org/10.1074/jbc.X200007200.

    Article  CAS  PubMed  Google Scholar 

  60. Stincone, A., Prigione, A., Cramer, T., Wamelink, M. M. C., Campbell, K., Cheung, E., Olin-Sandoval, V., Grüning, N.-M., Krüger, A., Tauqeer Alam, M., Keller, M. A., Breitenbach, M., Brindle, K. M., Rabinowitz, J. D., and Ralser, M. (2015) The return of metabolism: biochemistry and physiology of the pentose phosphate pathway, Biol. Rev., 90, 927-963, https://doi.org/10.1111/brv.12140.

    Article  PubMed  Google Scholar 

  61. Patra, K. C., and Hay, N. (2014) The pentose phosphate pathway and cancer, Trends Biochem. Sci., 39, 347-354, https://doi.org/10.1016/j.tibs.2014.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alfarouk, K. O., Ahmed, S. B. M., Elliott, R. L., Benoit, A., Alqahtani, S. S., Ibrahim, M. E., Bashir, A. H. H., Alhoufie, S. T. S., Elhassan, G. O., Wales, C. C., Schwartz, L. H., Ali, H. S., Ahmed, A., Forde, P. F., Devesa, J., Cardone, R. A., Fais, S., Harguindey, S., and Reshkin, S. J. (2020) The pentose phosphate pathway dynamics in cancer and its dependency on intracellular pH, Metabolites, 10, 285, https://doi.org/10.3390/metabo10070285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ghanem, N., El-Baba, C., Araji, K., El-Khoury, R., Usta, J., and Darwiche, N. (2021) The pentose phosphate pathway in cancer: regulation and therapeutic opportunities, Chemotherapy, 66, 179-191, https://doi.org/10.1159/000519784.

    Article  CAS  PubMed  Google Scholar 

  64. Lang, L., Chemmalakuzhy, R., Shay, C., and Teng, Y. (2019) PFKP Signaling at a Glance: An Emerging Mediator of Cancer Cell Metabolism, in Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders (Guest, P. C., ed.) Springer International Publishing, Cham, pp. 243-258, https://doi.org/10.1007/978-3-030-12668-1_13.

  65. Shi, X., You, L., and Luo, R.-Y. (2019) Glycolytic reprogramming in cancer cells: PKM2 dimer predominance induced by pulsatile PFK-1 activity, Phys. Biol., 16, 066007, https://doi.org/10.1088/1478-3975/ab3f5a.

    Article  CAS  PubMed  Google Scholar 

  66. Moreno-Sánchez, R., Marín-Hernández, A., Gallardo-Pérez, J. C., Quezada, H., Encalada, R., Rodríguez-Enríquez, S., and Saavedra, E. (2012) Phosphofructokinase type 1 kinetics, isoform expression, and gene polymorphisms in cancer cells, J. Cell. Biochem., 113, 1692-1703, https://doi.org/10.1002/jcb.24039.

    Article  CAS  PubMed  Google Scholar 

  67. Oliveira, G. L., Coelho, A. R., Marques, R., and Oliveira, P. J. (2021) Cancer cell metabolism: Rewiring the mitochondrial hub, Biochim. Biophys. Acta, 1867, 166016, https://doi.org/10.1016/j.bbadis.2020.166016.

    Article  CAS  Google Scholar 

  68. Dayton, T. L., Jacks, T., and Vander Heiden, M. G. (2016) PKM2, cancer metabolism, and the road ahead, EMBO Rep., 17, 1721-1730, https://doi.org/10.15252/embr.201643300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zahra, K., Dey, T., Ashish, Mishra, S. P., and Pandey, U. (2020) Pyruvate kinase M2 and cancer: the role of PKM2 in promoting tumorigenesis, Front. Oncol., 10, 159, https://doi.org/10.3389/fonc.2020.00159.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhu, S., Guo, Y., Zhang, X., Liu, H., Yin, M., Chen, X., and Peng, C. (2021) Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics, Cancer Lett., 503, 240-248, https://doi.org/10.1016/j.canlet.2020.11.018.

    Article  CAS  PubMed  Google Scholar 

  71. Gao, J., Zhao, Y., Li, T., Gan, X., and Yu, H. (2022) The role of PKM2 in the regulation of mitochondrial function: focus on mitochondrial metabolism, oxidative stress, dynamic, and apoptosis. PKM2 in mitochondrial function, Oxid. Med. Cell. Longev., 2022, 7702681, https://doi.org/10.1155/2022/7702681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wu, P., Zhou, Y., Guo, Y., Zhang, S.-L., and Tam, K. Y. (2021) Recent developments of human monocarboxylate transporter (hMCT) inhibitors as anticancer agents, Drug Discov. Today, 26, 836-844, https://doi.org/10.1016/j.drudis.2021.01.003.

    Article  CAS  PubMed  Google Scholar 

  73. Hao, G., Xu, Z. P., and Li, L. (2018) Manipulating extracellular tumour pH: an effective target for cancer therapy, RSC Adv., 8, 22182-22192, https://doi.org/10.1039/C8RA02095G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kato, Y., Ozawa, S., Miyamoto, C., Maehata, Y., Suzuki, A., Maeda, T., and Baba, Y. (2013) Acidic extracellular microenvironment and cancer, Cancer Cell Int., 13, 89, https://doi.org/10.1186/1475-2867-13-89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kobliakov, V. A. (2022) The role of extra- and intracellular pH values in regulation of the tumor process, Cell Tissue Biol., 16, 114-120, https://doi.org/10.1134/S1990519X22020079.

    Article  CAS  Google Scholar 

  76. Alfarouk, K. O., Ahmed, S. B. M., Ahmed, A., Elliott, R. L., Ibrahim, M. E., Ali, H. S., Wales, C. C., Nourwali, I., Aljarbou, A. N., Bashir, A. H. H., Alhoufie, S. T. S., Alqahtani, S. S., Cardone, R. A., Fais, S., Harguindey, S., and Reshkin, S. J. (2020) The interplay of dysregulated pH and electrolyte imbalance in cancer, Cancers (Basel), 12, 898, https://doi.org/10.3390/cancers12040898.

    Article  CAS  PubMed  Google Scholar 

  77. Gao, W., Zhang, H., Chang, G., Xie, Z., Wang, H., Ma, L., Han, Z., Li, Q., and Pang, T. (2014) Decreased intracellular pH induced by cariporide differentially contributes to human umbilical cord-derived mesenchymal stem cells differentiation, Cell. Physiol. Biochem., 33, 185-194, https://doi.org/10.1159/000356661.

    Article  CAS  PubMed  Google Scholar 

  78. Alfarouk, K. O., Verduzco, D., Rauch, C., Muddathir, A. K., Adil, H. H. B., Elhassan, G. O., Ibrahim, M. E., David Polo Orozco, J., Cardone, R. A., Reshkin, S. J., and Harguindey, S. (2014) Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question, Oncoscience, 1, 777-802, https://doi.org/10.18632/oncoscience.109.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Choi, S. Y. C., Collins, C. C., Gout, P. W., and Wang, Y. (2013) Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J. Pathol., 230, 350-355, https://doi.org/10.1002/path.4218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mendes, C., and Serpa, J. (2020) Revisiting lactate dynamics in cancer – a metabolic expertise or an alternative attempt to survive? J. Mol. Med., 98, 1397-1414, https://doi.org/10.1007/s00109-020-01965-0.

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, D., Tang, Z., Huang, H., Zhou, G., Cui, C., Weng, Y., Liu, W., Kim, S., Lee, S., Perez-Neut, M., Ding, J., Czyz, D., Hu, R., Ye, Z., He, M., Zheng, Y. G., Shuman, H. A., Dai, L., Ren, B., Roeder, R. G., et al. (2019) Metabolic regulation of gene expression by histone lactylation, Nature, 574, 575-580, https://doi.org/10.1038/s41586-019-1678-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang, J., Huang, D., Jiang, Y., Hou, J., Tian, M., Li, J., Sun, L., Zhang, Y., Zhang, T., Li, Z., Li, Z., Tong, S., and Ma, Y. (2021) Lactate modulates cellular metabolism through histone lactylation-mediated gene expression in non-small cell lung cancer, Front. Oncol., 11, 647559, https://doi.org/10.3389/fonc.2021.647559.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Certo, M., Llibre, A., Lee, W., and Mauro, C. (2022) Understanding lactate sensing and signalling, Trends Endocrinol. Metab., 33, 722-735, https://doi.org/10.1016/j.tem.2022.07.004.

    Article  CAS  PubMed  Google Scholar 

  84. McCommis, K. S., and Finck, B. N. (2015) Mitochondrial pyruvate transport: a historical perspective and future research directions, Biochem. J., 466, 443-454, https://doi.org/10.1042/bj20141171.

    Article  CAS  PubMed  Google Scholar 

  85. Ruiz-Iglesias, A., and Mañes, S. (2021) The importance of mitochondrial pyruvate carrier in cancer cell metabolism and tumorigenesis, Cancers (Basel), 13, 1488, https://doi.org/10.3390/cancers13071488.

    Article  CAS  PubMed  Google Scholar 

  86. Martin, W. F. (2020) Older than genes: the acetyl CoA pathway and origins, Front. Microbiol., 11, 817, https://doi.org/10.3389/fmicb.2020.00817.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cantor, J. R., and Sabatini, D. M. (2012) Cancer cell metabolism: one hallmark, many faces, Cancer Discov., 2, 881-898, https://doi.org/10.1158/2159-8290.cd-12-0345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alberghina, L., Gaglio, D., Gelfi, C., Moresco, R., Mauri, G., Bertolazzi, P., Messa, C., Gilardi, M., Chiaradonna, F., and Vanoni, M. (2012) Cancer cell growth and survival as a system-level property sustained by enhanced glycolysis and mitochondrial metabolic remodeling, Front. Physiol., 3, 362, https://doi.org/10.3389/fphys.2012.00362.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Chang, L., Fang, S., and Gu, W. (2020) The molecular mechanism of metabolic remodeling in lung cancer, J. Cancer, 11, 1403-1411, https://doi.org/10.7150/jca.31406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Le, A., Lane, A. N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., Tsukamoto, T., Rojas, C. J., Slusher, B. S., Zhang, H., Zimmerman, L. J., Liebler, D. C., Slebos, R. J. C., Lorkiewicz, P. K., Higashi, R. M., Fan, T. W. M., and Dang, C. V. (2012) Glucose-independent glutamine metabolism via TCA Cycling for proliferation and survival in B cells, Cell Metab., 15, 110-121, https://doi.org/10.1016/j.cmet.2011.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wise, D. R., and Thompson, C. B. (2010) Glutamine addiction: a new therapeutic target in cancer, Trends Biochem. Sci., 35, 427-433, https://doi.org/10.1016/j.tibs.2010.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, Z., Liu, F., Fan, N., Zhou, C., Li, D., Macvicar, T., Dong, Q., Bruns, C. J., and Zhao, Y. (2020) Targeting glutaminolysis: new perspectives to understand cancer development and novel strategies for potential target therapies, Front. Oncol., 10, 589508, https://doi.org/10.3389/fonc.2020.589508.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Halama, A., and Suhre, K. (2022) Advancing cancer treatment by targeting glutamine metabolism – a roadmap, Cancers (Basel), 14, 553, https://doi.org/10.3390/cancers14030553.

    Article  CAS  PubMed  Google Scholar 

  94. Yang, L., Venneti, S., and Nagrath, D. (2017) Glutaminolysis: a hallmark of cancer metabolism, Annu. Rev. Biomed. Eng., 19, 163-194, https://doi.org/10.1146/annurev-bioeng-071516-044546.

    Article  CAS  PubMed  Google Scholar 

  95. Yoo, H. C., Yu, Y. C., Sung, Y., and Han, J. M. (2020) Glutamine reliance in cell metabolism, Exp. Mol. Med., 52, 1496-1516, https://doi.org/10.1038/s12276-020-00504-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, S.-C., Shestov, A. A., Guo, L., Zhang, Q., Roman, J. C., Liu, X., Wang, H. Y., Pickup, S., Nath, K., Lu, P., Hofbauer, S., Mesaros, C., Wang, Y. L., Nelson, D. S., Schuster, S. J., Blair, I. A., Glickson, J. D., and Wasik, M. A. (2019) Metabolic detection of Bruton’s tyrosine kinase inhibition in mantle cell lymphoma cells, Mol. Cancer Res., 17, 1365-1377, https://doi.org/10.1158/1541-7786.mcr-18-0256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sandulache, V. C., Ow, T. J., Pickering, C. R., Frederick, M. J., Zhou, G., Fokt, I., Davis-Malesevich, M., Priebe, W., and Myers, J. N. (2011) Glucose, not glutamine, is the dominant energy source required for proliferation and survival of head and neck squamous carcinoma cells, Cancer, 117, 2926-2938, https://doi.org/10.1002/cncr.25868.

    Article  CAS  PubMed  Google Scholar 

  98. Seyfried, T. N., Arismendi-Morillo, G., Mukherjee, P., and Chinopoulos, C. (2020) On the origin of ATP synthesis in cancer, iScience, 23, 101761, https://doi.org/10.1016/j.isci.2020.101761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yoshida, G. J. (2020) Beyond the Warburg effect: N-Myc contributes to metabolic reprogramming in cancer cells, Front. Oncol., 10, 791, https://doi.org/10.3389/fonc.2020.00791.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Sainero-Alcolado, L., Liaño-Pons, J., Ruiz-Pérez, M. V., and Arsenian-Henriksson, M. (2022) Targeting mitochondrial metabolism for precision medicine in cancer, Cell Death Differ., 29, 1304-1317, https://doi.org/10.1038/s41418-022-01022-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vincent, E. E., Sergushichev, A., Griss, T., Gingras, M.-C., Samborska, B., Ntimbane, T., Coelho, P. P., Blagih, J., Raissi, T. C., Choinière, L., Bridon, G., Loginicheva, E., Flynn, B. R., Thomas, E. C., Tavaré, J. M., Avizonis, D., Pause, A., Elder, D. J. E., Artyomov, M. N., and Jones, R. G. (2015) Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth, Mol. Cell, 60, 195-207, https://doi.org/10.1016/j.molcel.2015.08.013.

    Article  CAS  PubMed  Google Scholar 

  102. Duraj, T., Carrión-Navarro, J., Seyfried, T. N., García-Romero, N., and Ayuso-Sacido, A. (2021) Metabolic therapy and bioenergetic analysis: The missing piece of the puzzle, Mol. Metab., 54, 101389, https://doi.org/10.1016/j.molmet.2021.101389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, C., Zhang, G., Zhao, L., Ma, Z., and Chen, H. (2016) Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer, World J. Surg. Oncol., 14, 15, https://doi.org/10.1186/s12957-016-0769-9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rabinowitz, J. D., and Enerbäck, S. (2020) Lactate: the ugly duckling of energy metabolism, Nat. Metabol., 2, 566-571, https://doi.org/10.1038/s42255-020-0243-4.

    Article  CAS  Google Scholar 

  105. Hui, S., Ghergurovich, J. M., Morscher, R. J., Jang, C., Teng, X., Lu, W., Esparza, L. A., Reya, T., Le, Z., Yanxiang Guo, J., White, E., and Rabinowitz, J. D. (2017) Glucose feeds the TCA cycle via circulating lactate, Nature, 551, 115-118, https://doi.org/10.1038/nature24057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Faubert, B., Li, K. Y., Cai, L., Hensley, C. T., Kim, J., Zacharias, L. G., Yang, C., Do, Q. N., Doucette, S., Burguete, D., Li, H., Huet, G., Yuan, Q., Wigal, T., Butt, Y., Ni, M., Torrealba, J., Oliver, D., Lenkinski, R. E., Malloy, C. R., et al. (2017) Lactate metabolism in human lung tumors, Cell, 171, 358-371.e359, https://doi.org/10.1016/j.cell.2017.09.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wilde, L., Roche, M., Domingo-Vidal, M., Tanson, K., Philp, N., Curry, J., and Martinez-Outschoorn, U. (2017) Metabolic coupling and the reverse Warburg effect in cancer: implications for novel biomarker and anticancer agent development, Semin. Oncol., 44, 198-203, https://doi.org/10.1053/j.seminoncol.2017.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shestov, A. A., Barker, B., Gu, Z., and Locasale, J. W. (2013) Computational approaches for understanding energy metabolism, WIREs Syst. Biol. Med., 5, 733-750, https://doi.org/10.1002/wsbm.1238.

    Article  CAS  Google Scholar 

  109. Sivanand, S., and Vander Heiden, M. G. (2020) Emerging roles for branched-chain amino acid metabolism in cancer, Cancer Cell, 37, 147-156, https://doi.org/10.1016/j.ccell.2019.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lieu, E. L., Nguyen, T., Rhyne, S., and Kim, J. (2020) Amino acids in cancer, Exp. Mol. Med., 52, 15-30, https://doi.org/10.1038/s12276-020-0375-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Broadfield, L. A., Pane, A. A., Talebi, A., Swinnen, J. V., and Fendt, S.-M. (2021) Lipid metabolism in cancer: new perspectives and emerging mechanisms, Dev. Cell, 56, 1363-1393, https://doi.org/10.1016/j.devcel.2021.04.013.

    Article  CAS  PubMed  Google Scholar 

  112. Wei, Z., Liu, X., Cheng, C., Yu, W., and Yi, P. (2021) Metabolism of amino acids in cancer, Front. Cell Dev. Biol., 8, 603837, https://doi.org/10.3389/fcell.2020.603837.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Silyanova, E. A., Samet, A. V., Semenova, M. N., and Semenov, V. V. (2021) Synthesis and antiproliferative properties of 3,4-diarylpyrrole-2-carboxamides, Russ. Chem. Bull., 70, 498-509, https://doi.org/10.1007/s11172-021-3115-5.

    Article  CAS  Google Scholar 

  114. Mühlethaler, T., Milanos, L., Martínez, J. A., Blum, T., Gioia, D., Roy, B., Prota, A., Cavalli, A., and Steinmetz, M. O. (2022) Rational design of a novel tubulin inhibitor with a unique mechanism of action, Angew. Chem. Int. Ed. Engl., 61, e202204052, https://doi.org/10.1002/anie.202204052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Silyanova, E. A., Ushkarov, V. I., Samet, A. V., Maksimenko, A. S., Koblov, I. A., Kislyi, V. P., Semenova, M. N., and Semenov, V. V. (2022) A comparative evaluation of monomethoxy substituted o-diarylazoles as antiproliferative microtubule destabilizing agents, Mendeleev Commun., 32, 120-122, https://doi.org/10.1016/j.mencom.2022.01.039.

    Article  CAS  Google Scholar 

  116. Pérez-Tomás, R., and Pérez-Guillén, I. (2020) Lactate in the tumor microenvironment: an essential molecule in cancer progression and treatment, Cancers (Basel), 12, 3244, https://doi.org/10.3390/cancers12113244.

    Article  CAS  PubMed  Google Scholar 

  117. McCarty, M. F., and Whitaker, J. (2010) Manipulating tumor acidification as a cancer treatment strategy, Altern. Med. Rev., 15, 264-272.

    PubMed  Google Scholar 

  118. Forsythe, S. M., and Schmidt, G. A. (2000) Sodium bicarbonate for the treatment of lactic acidosis, Chest, 117, 260-267, https://doi.org/10.1378/chest.117.1.260.

    Article  CAS  PubMed  Google Scholar 

  119. Takigawa, S., Sugano, N., Ochiai, K., Arai, N., Ota, N., and Ito, K. (2008) Effects of sodium bicarbonate on butyric acid-induced epithelial cell damage in vitro, J. Oral Sci., 50, 413-417, https://doi.org/10.2334/josnusd.50.413.

    Article  CAS  PubMed  Google Scholar 

  120. Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J., Sloane, B. F., Hashim, A. I., Morse, D. L., Raghunand, N., Gatenby, R. A., and Gillies, R. J. (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases, Cancer Res., 69, 2260-2268, https://doi.org/10.1158/0008-5472.can-07-5575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Estrella, V., Chen, T., Lloyd, M., Wojtkowiak, J., Cornnell, H. H., Ibrahim-Hashim, A., Bailey, K., Balagurunathan, Y., Rothberg, J. M., Sloane, B. F., Johnson, J., Gatenby, R. A., and Gillies, R. J. (2013) Acidity generated by the tumor microenvironment drives local invasion, Cancer Res., 73, 1524-1535, https://doi.org/10.1158/0008-5472.can-12-2796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Pilon-Thomas, S., Kodumudi, K. N., El-Kenawi, A. E., Russell, S., Weber, A. M., Luddy, K., Damaghi, M., Wojtkowiak, J. W., Mulé, J. J., Ibrahim-Hashim, A., and Gillies, R. J. (2016) Neutralization of tumor acidity improves antitumor responses to immunotherapy, Cancer Res., 76, 1381-1390, https://doi.org/10.1158/0008-5472.can-15-1743.

    Article  CAS  PubMed  Google Scholar 

  123. Yang, M., Zhong, X., and Yuan, Y. (2020) Does baking soda function as a magic bullet for patients with cancer? A mini review, Integr. Cancer Ther., 19, 1534735420922579, https://doi.org/10.1177/1534735420922579.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wang, Y., Zhou, X., Wang, W., Wu, Y., Qian, Z., and Peng, Q. (2021) Sodium bicarbonate, an inorganic salt and a potential active agent for cancer therapy, Chin. Chem. Lett., 32, 3687-3695, https://doi.org/10.1016/j.cclet.2021.06.032.

    Article  CAS  Google Scholar 

  125. Gillies, R. J. (2022) Cancer heterogeneity and metastasis: life at the edge, Clin. Exp. Metastasis, 39, 15-19, https://doi.org/10.1007/s10585-021-10101-2.

    Article  CAS  PubMed  Google Scholar 

  126. Korang, S. K., Safi, S., Feinberg, J., Nielsen, E. E., Gluud, C., and Jakobsen, J. C. (2021) Bicarbonate for acute acidosis, Cochrane Database System. Rev., 3, 21, https://doi.org/10.1002/14651858.CD014371.

    Article  Google Scholar 

  127. Ying, C., Jin, C., Zeng, S., Chao, M., and Hu, X. (2022) Alkalization of cellular pH leads to cancer cell death by disrupting autophagy and mitochondrial function, Oncogene, 41, 3886-3897, https://doi.org/10.1038/s41388-022-02396-6.

    Article  CAS  PubMed  Google Scholar 

  128. Cuhaci, B., Lee, J., and Ahmed, Z. (2000) Sodium bicarbonate controversy in lactic acidosis, Chest, 118, 882-884, https://doi.org/10.1378/chest.118.3.882.

    Article  CAS  PubMed  Google Scholar 

  129. Velissaris, D., Karamouzos, V., Ktenopoulos, N., Pierrakos, C., and Karanikolas, M. (2015) The use of sodium bicarbonate in the treatment of acidosis in sepsis: a literature update on a long term debate, Crit. Care Res. Pract., 2015, 605830, https://doi.org/10.1155/2015/605830.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Berardi, J., Logan, A., and Rao, A. (2008) Plant based dietary supplement increases urinary pH, J. Int. Soc. Sports Nutr., 5, 1-8, https://doi.org/10.1186/1550-2783-5-20.

    Article  CAS  Google Scholar 

  131. Konig, D., Muser, K., Dickhuth, H. H., Berg, A., and Deibert, P. (2009) Effect of a supplement rich in alkaline minerals on acid-base balance in humans, Nutrition J., 8, 23, https://doi.org/10.1186/1475-2891-8-23.

    Article  CAS  Google Scholar 

  132. Welch, A. A., Mulligan, A., Bingham, S. A., and Khaw, K.-T. (2008) Urine pH is an indicator of dietary acid – base load, fruit and vegetables and meat intakes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study, Br. J. Nutr., 99, 1335-1343, https://doi.org/10.1017/S0007114507862350.

    Article  CAS  PubMed  Google Scholar 

  133. Wright, M. E., Michaud, D. S., Pietinen, P., Taylor, P. R., Virtamo, J., and Albanes, D. (2005) Estimated urine pH and bladder cancer risk in a cohort of male smokers (Finland), Cancer Causes Control, 16, 1117-1123, https://doi.org/10.1007/s10552-005-0348-9.

    Article  PubMed  Google Scholar 

  134. Maeda, T., Kikuchi, E., Matsumoto, K., Miyajima, A., and Oya, M. (2011) Urinary pH is highly associated with tumor recurrence during intravesical mitomycin C therapy for nonmuscle invasive bladder tumor, J. Urol., 185, 802-806, https://doi.org/10.1016/j.juro.2010.10.081.

    Article  CAS  PubMed  Google Scholar 

  135. Ceylan, C., Doluoglu, O. G., and Yahşi, S. (2020) A different perspective: can urine pH be important in the diagnosis of prostate cancer? Urologia J., 87, 19-22, https://doi.org/10.1177/0391560319865724.

    Article  Google Scholar 

  136. Juloski, J. T., Rakic, A., Ćuk, V. V., Ćuk, V. M., Stefanović, S., Nikolić, D., Janković, S., Trbovich, A. M., and De Luka, S. R. (2020) Colorectal cancer and trace elements alteration, J. Trace Elem. Med. Biol., 59, 126451, https://doi.org/10.1016/j.jtemb.2020.126451.

    Article  CAS  PubMed  Google Scholar 

  137. Maeng, Y.-S., Lee, R., Lee, B., Choi, S.-I., and Kim, E. K. (2016) Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells, Sci. Rep., 6, 20739, https://doi.org/10.1038/srep20739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sun, A., Shanmugam, I., Song, J., Terranova, P. F., Thrasher, J. B., and Li, B. (2007) Lithium suppresses cell proliferation by interrupting E2F–DNA interaction and subsequently reducing S – phase gene expression in prostate cancer, Prostate, 67, 976-988, https://doi.org/10.1002/pros.20586.

    Article  CAS  PubMed  Google Scholar 

  139. Ozerdem, A., Ceylan, D., and Targıtay, B. (2018) The relationship between lithium and cancer proliferation: a case-based review of the literature, Curr. Drug Metab., 19, 653-662, https://doi.org/10.2174/1389200219666180430095933.

    Article  CAS  PubMed  Google Scholar 

  140. Ge, W., and Jakobsson, E. (2019) Systems biology understanding of the effects of lithium on cancer, Front. Oncol., 9, 296, https://doi.org/10.3389/fonc.2019.00296.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Taskaeva, I., Gogaeva, I., Shatruk, A., and Bgatova, N. (2022) Lithium enhances autophagy and cell death in skin melanoma: an ultrastructural and immunohistochemical study, Microsc. Microanal., 28, 1703-1711, https://doi.org/10.1017/S1431927622000745.

    Article  CAS  Google Scholar 

  142. Israelachvili, J. N. (2011) 4 – Interactions Involving Polar Molecules. in Intermolecular and Surface Forces (Third Edition) (Israelachvili, J. N., ed.) Academic Press, Boston, pp. 71-90, https://doi.org/10.1016/B978-0-12-391927-4.10004-0.

  143. Kobayashi, D., Nishimura, N., and Hazama, A. (2021) Cesium treatment depresses glycolysis pathway in HeLa cell, Cell. Physiol. Biochem., 55, 477-488, https://doi.org/10.33594/000000399.

    Article  CAS  PubMed  Google Scholar 

  144. Melnikov, P., and Zanoni, L. (2010) Clinical effects of cesium intake, Biol. Trace Elem. Res., 135, 1-9, https://doi.org/10.1007/s12011-009-8486-7.

    Article  CAS  PubMed  Google Scholar 

  145. Horn, S., Naidus, E., Alper, S. L., and Danziger, J. (2015) Cesium-associated hypokalemia successfully treated with amiloride, Clin. Kidney J., 8, 335-338, https://doi.org/10.1093/ckj/sfv017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Woodford, M. R., Chen, V. Z., Backe, S. J., Bratslavsky, G., and Mollapour, M. (2020) Structural and functional regulation of lactate dehydrogenase-A in cancer, Future Med. Chem., 12, 439-455, https://doi.org/10.4155/fmc-2019-0287.

    Article  CAS  PubMed  Google Scholar 

  147. Feng, Y., Xiong, Y., Qiao, T., Li, X., Jia, L., and Han, Y. (2018) Lactate dehydrogenase A: a key player in carcinogenesis and potential target in cancer therapy, Cancer Med., 7, 6124-6136, https://doi.org/10.1002/cam4.1820.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Kozal, K., Jóźwiak, P., and Krześlak, A. (2021) Contemporary perspectives on the Warburg effect inhibition in cancer therapy, Cancer Control, 28, 10732748211041243, https://doi.org/10.1177/10732748211041243.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Kasper, G., Weiser, A. A., Rump, A., Sparbier, K., Dahl, E., Hartmann, A., Wild, P., Schwidetzky, U., Castaños-Vélez, E., and Lehmann, K. (2005) Expression levels of the putative zinc transporter LIV-1 are associated with a better outcome of breast cancer patients, Int. J. Cancer, 117, 961-973, https://doi.org/10.1002/ijc.21235.

    Article  CAS  PubMed  Google Scholar 

  150. Serrano-Novillo, C., Capera, J., Colomer-Molera, M., Condom, E., Ferreres, J. C., and Felipe, A. (2019) Implication of voltage-gated potassium channels in neoplastic cell proliferation, Cancers (Basel), 11, 287, https://doi.org/10.3390/cancers11030287.

    Article  CAS  PubMed  Google Scholar 

  151. Wrzosek, A., Augustynek, B., Żochowska, M., and Szewczyk, A. (2020) Mitochondrial potassium channels as druggable targets, Biomolecules, 10, 1200, https://doi.org/10.3390/biom10081200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Liu, J., Qu, C., Han, C., Chen, M.-M., An, L.-J., and Zou, W. (2019) Potassium channels and their role in glioma: a mini review, Mol. Membr. Biol., 35, 76-85, https://doi.org/10.1080/09687688.2020.1729428.

    Article  CAS  PubMed  Google Scholar 

  153. Ganser, K., Klumpp, L., Bischof, H., Lukowski, R., Eckert, F., and Huber, S. M. (2021) Potassium Channels in Cancer, in Pharmacology of Potassium Channels (Gamper, N., and Wang, K., eds) Springer International Publishing, Cham, pp. 253-275, https://doi.org/10.1007/164_2021_465.

  154. Wrzosek, A., Gałecka, S., Żochowska, M., Olszewska, A., and Kulawiak, B. (2022) Alternative targets for modulators of mitochondrial potassium channels, Molecules, 27, 299, https://doi.org/10.3390/molecules27010299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zúñiga, L., Cayo, A., González, W., Vilos, C., and Zúñiga, R. (2022) Potassium channels as a target for cancer therapy: current perspectives, Onco Targets Ther., 15, 783-797, https://doi.org/10.2147/OTT.S326614.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Banderali, U., Leanza, L., Eskandari, N., and Gentile, S. (2022) Potassium and chloride ion channels in cancer: a novel paradigm for cancer therapeutics, in Targets of Cancer Diagnosis and Treatment: Ion Transport in Tumor Biology (Stock, C., and Pardo, L. A., eds.) Springer International Publishing, Cham, Pp. 135-155, https://doi.org/10.1007/112_2021_62.

  157. Ganapathy, V., Thangaraju, M., Gopal, E., Martin, P. M., Itagaki, S., Miyauchi, S., and Prasad, P. D. (2008) Sodium-coupled monocarboxylate transporters in normal tissues and in cancer, AAPS J., 10, 193-199, https://doi.org/10.1208/s12248-008-9022-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Ganapathy, V., Thangaraju, M., and Prasad, P. D. (2009) Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond, Pharmacol. Ther., 121, 29-40, https://doi.org/10.1016/j.pharmthera.2008.09.005.

    Article  CAS  PubMed  Google Scholar 

  159. De Milito, A., and Fais, S. (2005) Tumor acidity, chemoresistance and proton pump inhibitors, Future Oncol., 1, 779-786, https://doi.org/10.2217/14796694.1.6.779.

    Article  CAS  PubMed  Google Scholar 

  160. De Milito, A., Lucia Marino, M., and Fais, S. (2012) A rationale for the use of proton pump inhibitors as antineoplastic agents, Curr. Pharm. Des., 18, 1395-1406, https://doi.org/10.2174/138161212799504911.

    Article  CAS  PubMed  Google Scholar 

  161. Payen, V. L., Mina, E., Van Hée, V. F., Porporato, P. E., and Sonveaux, P. (2020) Monocarboxylate transporters in cancer, Mol. Metabol., 33, 48-66, https://doi.org/10.1016/j.molmet.2019.07.006.

    Article  CAS  Google Scholar 

  162. Nath, K., Nelson, D. S., Heitjan, D. F., Leeper, D. B., Zhou, R., and Glickson, J. D. (2015) Lonidamine induces intracellular tumor acidification and ATP depletion in breast, prostate and ovarian cancer xenografts and potentiates response to doxorubicin, NMR Biomed., 28, 281-290, https://doi.org/10.1002/nbm.3240.

    Article  CAS  PubMed  Google Scholar 

  163. Guo, L., Shestov, A. A., Worth, A. J., Nath, K., Nelson, D. S., Leeper, D. B., Glickson, J. D., and Blair, I. A. (2016) Inhibition of mitochondrial complex II by the anticancer agent lonidamine, J. Biol. Chem., 291, 42-57, https://doi.org/10.1074/jbc.M115.697516.

    Article  CAS  PubMed  Google Scholar 

  164. Nath, K., Nelson, D. S., Roman, J., Putt, M. E., Lee, S.-C., Leeper, D. B., and Glickson, J. D. (2017) Effect of lonidamine on systemic therapy of DB-1 human melanoma xenografts with temozolomide, Anticancer Res., 37, 3413-3421, https://doi.org/10.21873/anticanres.11708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Nath, K., Roman, J., Nelson, D. S., Guo, L., Lee, S.-C., Orlovskiy, S., Muriuki, K., Heitjan, D. F., Pickup, S., Leeper, D. B., Blair, I. A., Putt, M. E., and Glickson, J. D. (2018) Effect of differences in metabolic activity of melanoma models on response to lonidamine plus doxorubicin, Sci. Rep., 8, 14654, https://doi.org/10.1038/s41598-018-33019-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Malavolta, M., and Mocchegiani, E. (2018) Trace Elements and Minerals in Health and Longevity, Springer International Publishing, Cham, Switzerland, https://doi.org/10.1007/978-3-030-03742-0.

  167. Gregoriadis, G. C., Apostolidis, N. S., Romanos, A. N., and Paradellis, T. P. (1983) A comparative study of trace elements in normal and cancerous colorectal tissues, Cancer, 52, 508-519, https://doi.org/10.1002/1097-0142(19830801)52:3<508::aid-cncr2820520322>3.0.co;2-8.

    Article  CAS  PubMed  Google Scholar 

  168. Drake, E. N., 2nd, and Sky-Peck, H. H. (1989) Discriminant analysis of trace element distribution in normal and malignant human tissues, Cancer Res., 49, 4210-4215.

    CAS  PubMed  Google Scholar 

  169. Zaichick, V. Y., Tsyb, A. F., and Vtyurin, B. M. (1995) Trace elements and thyroid cancer, Analyst, 120, 817-821, https://doi.org/10.1039/an9952000817.

    Article  CAS  Google Scholar 

  170. Zaichick, V., and Zaichick, S. (2018) Associations between age and 50 trace element contents and relationships in intact thyroid of males, Aging Clin. Exp. Res., 30, 1059-1070, https://doi.org/10.1007/s40520-018-0906-0.

    Article  PubMed  Google Scholar 

  171. Popescu, E., and Stanescu, A. M. A. (2019) Trace elements and cancer, Mod. Med., 26, 169-175, https://doi.org/10.31689/rmm.2019.26.4.169.

    Article  Google Scholar 

  172. Bottoni, P., and Scatena, R. (2019) Mitochondrial Metabolism in Cancer. A Tangled Topic. Which Role for Proteomics? in Mitochondria in Health and in Sickness (Urbani, A., and Babu, M., eds), Springer Singapore, Singapore, pp. 1-16, https://doi.org/10.1007/978-981-13-8367-0_1.

  173. Cilliers, K., Muller, C. J. F., and Page, B. J. (2020) Trace element concentration changes in brain tumors: a review, Anat. Rec., 303, 1293-1299, https://doi.org/10.1002/ar.24254.

    Article  CAS  Google Scholar 

  174. Lossow, K., Schwarz, M., and Kipp, A. P. (2021) Are trace element concentrations suitable biomarkers for the diagnosis of cancer? Redox Biol., 42, 101900, https://doi.org/10.1016/j.redox.2021.101900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Rodríguez-Tomàs, E., Baiges-Gaya, G., Castañé, H., Arenas, M., Camps, J., and Joven, J. (2021) Trace elements under the spotlight: A powerful nutritional tool in cancer, J. Trace Elem. Med Biol., 68, 126858, https://doi.org/10.1016/j.jtemb.2021.126858.

    Article  CAS  PubMed  Google Scholar 

  176. Gardner, D. S., Allen, J. C., Goodson, D., Harvey, D., Sharman, A., Skinner, H., Szafranek, A., Young, J. S., Bailey, E. H., and Devonald, M. A. J. (2022) Urinary trace elements are biomarkers for early detection of acute kidney injury, Kidney Int. Rep., 7, 1524-1538, https://doi.org/10.1016/j.ekir.2022.04.085.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Beenken, A. (2022) Trace metaluria as a biomarker of acute kidney injury, Kidney Int. Rep., 7, 1461-1462, https://doi.org/10.1016/j.ekir.2022.05.028.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Fukuda, H., Ebara, M., Yamada, H., Arimoto, M., Okabe, S., Obu, M., Yoshikawa, M., Sugiura, N., and Saisho, H. (2004) Trace elements and cancer, Japan Med. Assoc. J., 47, 391-395.

    Google Scholar 

  179. Wiernsperger, N., and Rapin, J. (2010) Trace elements in glucometabolic disorders: an update, Diabetol. Metab. Syndr., 2, 70, https://doi.org/10.1186/1758-5996-2-70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Kurtarkar, P., Aggarwal, S., Ahmed, I., Khadtare, S., and Digholkar, R. (2015) Effect of additives to sodium hypochlorite on pulp tissue dissolution and physico-mechanical effects on root canal dentin: a systematic review, J. Dent. Res. Rev., 7, 75-85, https://doi.org/10.4103/jdrr.jdrr_4_20.

    Article  Google Scholar 

  181. Samavarchi Tehrani, S., Mahmoodzadeh Hosseini, H., Yousefi, T., Abolghasemi, M., Qujeq, D., Maniati, M., and Amani, J. (2019) The crosstalk between trace elements with DNA damage response, repair, and oxidative stress in cancer, J. Cell. Biochem., 120, 1080-1105, https://doi.org/10.1002/jcb.27617.

    Article  CAS  PubMed  Google Scholar 

  182. Yang, Y.-W., Dai, C.-M., Chen, X.-H., and Feng, J.-F. (2021) The relationship between serum trace elements and oxidative stress of patients with different types of cancer, Oxid. Med. Cell. Longev., 2021, 4846951, https://doi.org/10.1155/2021/4846951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Zaichick, S., Zaichick, V., Nosenko, S., and Moskvina, I. (2012) Mass fractions of 52 Trace elements and zinc/trace element content ratios in intact human prostates investigated by inductively coupled plasma mass spectrometry, Biol. Trace Elem. Res., 149, 171-183, https://doi.org/10.1007/s12011-012-9427-4.

    Article  CAS  PubMed  Google Scholar 

  184. Zaichick, V., and Zaichick, S. (2016) Prostatic tissue levels of 43 trace elements in patients with prostate adenocarcinoma, Cancer Clin. Oncol., 5, 79-94, https://doi.org/10.5539/cco.v5n1p79.

    Article  Google Scholar 

  185. Zaichick, V., and Zaichick, S. (2018) Twenty chemical element contents in normal and cancerous thyroid, Int. J. Hematol. Blo. Dis., 3, 1-13, https://doi.org/10.15226/ijhbd/3/2/00121.

    Article  Google Scholar 

  186. Venturelli, S., Leischner, C., Helling, T., Renner, O., Burkard, M., and Marongiu, L. (2022) Minerals and cancer: overview of the possible diagnostic value, Cancers (Basel), 14, 1256, https://doi.org/10.3390/cancers14051256.

    Article  CAS  PubMed  Google Scholar 

  187. Rosner, M. H., and DeMauro Renaghan, A. (2021) Disorders of divalent ions (magnesium, calcium, and phosphorous) in patients with cancer, Adv. Chronic Kidney Dis., 28, 447-459.e441, https://doi.org/10.1053/j.ackd.2021.09.005.

    Article  PubMed  Google Scholar 

  188. Murakami, M., and Hirano, T. (2008) Intracellular zinc homeostasis and zinc signaling, Cancer Sci., 99, 1515-1522, https://doi.org/10.1111/j.1349-7006.2008.00854.x.

    Article  CAS  PubMed  Google Scholar 

  189. Schwartz, M. K. (1975) Role of Trace Elements in Cancer, Cancer Res., 35, 3481-3487.

    CAS  PubMed  Google Scholar 

  190. Tan, C., Chen, H., and Xia, C. (2009) Early prediction of lung cancer based on the combination of trace element analysis in urine and an Adaboost algorithm, J. Pharm. Biomed. Anal., 49, 746-752, https://doi.org/10.1016/j.jpba.2008.12.010.

    Article  CAS  PubMed  Google Scholar 

  191. Bornhorst, J., Kipp, A. P., Haase, H., Meyer, S., and Schwerdtle, T. (2018) The crux of inept biomarkers for risks and benefits of trace elements, TrAC, Trends Anal. Chem., 104, 183-190, https://doi.org/10.1016/j.trac.2017.11.007.

    Article  CAS  Google Scholar 

  192. Lin, C.-N., Wang, L.-H., and Shen, K.-H. (2009) Determining urinary trace elements (Cu, Zn, Pb, As, and Se) in patients with bladder cancer, J. Clin. Lab. Anal., 23, 192-195, https://doi.org/10.1002/jcla.20318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Saikawa, H., Nagashima, H., Cho, K., Chiba, R., Sera, K., Shigeeda, W., Tomoyasu, M., Deguchi, H., Takahashi, F., Saito, H., Sugai, T., and Maemondo, M. (2021) Relationship between trace element in tumor and prognosis in lung cancer patients, Medicina, 57, 209, https://doi.org/10.3390/medicina57030209.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Burton, C., and Ma, Y. (2019) Current trends in cancer biomarker discovery using urinary metabolomics: achievements and new challenges, Curr. Med. Chem., 26, 5-28, https://doi.org/10.2174/0929867324666170914102236.

    Article  CAS  PubMed  Google Scholar 

  195. Orlova, M. A., and Orlov, A. P. (2011) Role of zinc in an organism and its influence on processes leading to apoptosis, J. Adv. Med. Med. Res., 1, 239-305, https://doi.org/10.9734/BJMMR/2011/488.

    Article  Google Scholar 

  196. Franklin, R. B., and Costello, L. C. (2009) The important role of the apoptotic effects of zinc in the development of cancers, J. Cell. Biochem., 106, 750-757, https://doi.org/10.1002/jcb.22049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Story, M. J. (2021) Zinc, ω-3 polyunsaturated fatty acids and vitamin D: an essential combination for prevention and treatment of cancers, Biochimie, 181, 100-122, https://doi.org/10.1016/j.biochi.2020.11.019.

    Article  CAS  PubMed  Google Scholar 

  198. Zhang, Y., Tian, Y., Zhang, H., Xu, B., and Chen, H. (2021) Potential pathways of zinc deficiency-promoted tumorigenesis, Biomed. Pharmacother., 133, 110983, https://doi.org/10.1016/j.biopha.2020.110983.

    Article  CAS  PubMed  Google Scholar 

  199. Lee, Y.-H., and Tuyet, P.-T. (2019) Synthesis and biological evaluation of quercetin–zinc (II) complex for anti-cancer and anti-metastasis of human bladder cancer cells, In Vitro Cell. Dev. Biol. Anim., 55, 395-404, https://doi.org/10.1007/s11626-019-00363-2.

    Article  CAS  PubMed  Google Scholar 

  200. Valenzano, M. C., Rybakovsky, E., Chen, V., Leroy, K., Lander, J., Richardson, E., Yalamanchili, S., McShane, S., Mathew, A., Mayilvaganan, B., Connor, L., Urbas, R., Huntington, W., Corcoran, A., Trembeth, S., McDonnell, E., Wong, P., Newman, G., Mercogliano, G., Zitin, M., et al. (2021) Zinc gluconate induces potentially cancer chemopreventive activity in Barrett’s esophagus: a phase 1 pilot study, Dig. Dis. Sci., 66, 1195-1211, https://doi.org/10.1007/s10620-020-06319-x.

    Article  CAS  PubMed  Google Scholar 

  201. Racca, L., Limongi, T., Vighetto, V., Dumontel, B., Ancona, A., Canta, M., Canavese, G., Garino, N., and Cauda, V. (2020) Zinc oxide nanocrystals and high-energy shock waves: a new synergy for the treatment of cancer cells, Front. Bioeng. Biotechnol., 8, 577, https://doi.org/10.3389/fbioe.2020.00577.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Anjum, S., Hashim, M., Malik, S. A., Khan, M., Lorenzo, J. M., Abbasi, B. H., and Hano, C. (2021) Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment, Cancers (Basel), 13, 4570, https://doi.org/10.3390/cancers13184570.

    Article  CAS  PubMed  Google Scholar 

  203. Hamrayev, H., Shameli, K., and Yusefi, M. (2021) Preparation of zinc oxide nanoparticles and its cancer treatment effects: a review paper, J. Adv. Res. Micro Nano Engineering, 2, 1-11, https://doi.org/10.37934/jrnn.1.1.6274.

    Article  Google Scholar 

  204. Shriwas, P., Roberts, D., Li, Y., Wang, L., Qian, Y., Bergmeier, S., Hines, J., Adhicary, S., Nielsen, C., and Chen, X. (2021) A small-molecule pan-class I glucose transporter inhibitor reduces cancer cell proliferation in vitro and tumor growth in vivo by targeting glucose-based metabolism, Cancer Metab., 9, 14, https://doi.org/10.1186/s40170-021-00248-7.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Kim, J.-w., and Dang, C. V. (2006) Cancer’s molecular sweet tooth and the Warburg effect, Cancer Res., 66, 8927-8930, https://doi.org/10.1158/0008-5472.

    Article  PubMed  Google Scholar 

  206. Marín-Hernández, A., Gallardo-Pérez, J. C., Rodríguez-Enríquez, S., Encalada, R., Moreno-Sánchez, R., and Saavedra, E. (2011) Modeling cancer glycolysis, Biochim. Biophys. Acta, 1807, 755-767, https://doi.org/10.1016/j.bbabio.2010.11.006.

    Article  CAS  PubMed  Google Scholar 

  207. Cairns, R. A., Harris, I. S., and Mak, T. W. (2011) Regulation of cancer cell metabolism, Nat. Rev. Cancer, 11, 85-95, https://doi.org/10.1038/nrc2981.

    Article  CAS  PubMed  Google Scholar 

  208. Porporato, P. E., Dadhich, R. K., Dhup, S., Copetti, T., and Sonveaux, P. (2011) Anticancer targets in the glycolytic metabolism of tumors: a comprehensive review, Front. Pharmacol., 2, Article 49, https://doi.org/10.3389/fphar.2011.00049.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Akins, S. N., Nielson, C. T., and Le, V. H. (2018) Inhibition of glycolysis and glutaminolysis: an emerging drug discovery approach to combat cancer, Curr. Top. Med. Chem., 18, 494-504, https://doi.org/10.2174/1568026618666180523111351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Abdel-Wahab, A. F., Mahmoud, W., and Al-Harizy, R. M. (2019) Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy, Pharmacol. Res., 150, 104511, https://doi.org/10.1016/j.phrs.2019.104511.

    Article  CAS  PubMed  Google Scholar 

  211. Icard, P., Loi, M., Wu, Z., Ginguay, A., Lincet, H., Robin, E., Coquerel, A., Berzan, D., Fournel, L., and Alifano, M. (2021) Metabolic strategies for inhibiting cancer development, Adv. Nutr., 12, 1461-1480, https://doi.org/10.1093/advances/nmaa174.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Gyamfi, J., Kim, J., and Choi, J. (2022) Cancer as a metabolic disorder, Int. J. Mol. Sci., 23, 1155, https://doi.org/10.3390/ijms23031155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dadgar, T., Ebrahimi, N., Gholipour, A. R., Akbari, M., Khani, L., Ahmadi, A., and Hamblin, M. R. (2022) Targeting the metabolism of cancer stem cells by energy disruptor molecules, Crit. Rev. Oncol. Hematol., 169, 103545, https://doi.org/10.1016/j.critrevonc.2021.103545.

    Article  PubMed  Google Scholar 

  214. Pelicano, H., Martin, D. S., Xu, R. H., and Huang, P. (2006) Glycolysis inhibition for anticancer treatment, Oncogene, 25, 4633-4646, https://doi.org/10.1038/sj.onc.1209597.

    Article  CAS  PubMed  Google Scholar 

  215. Kroemer, G., and Pouyssegur, J. (2008) Tumor cell metabolism: cancer/s Achilles’ heel, Cancer Cell, 13, 472-482, https://doi.org/10.1016/j.ccr.2008.05.005.

    Article  CAS  PubMed  Google Scholar 

  216. Akram, M. (2013) Mini-review on glycolysis and cancer, J. Cancer Educ., 28, 454-457, https://doi.org/10.1007/s13187-013-0486-9.

    Article  CAS  PubMed  Google Scholar 

  217. Sun, X., Peng, Y., Zhao, J., Xie, Z., Lei, X., and Tang, G. (2021) Discovery and development of tumor glycolysis rate-limiting enzyme inhibitors, Bioorg. Chem., 112, 104891, https://doi.org/10.1016/j.bioorg.2021.104891.

    Article  CAS  PubMed  Google Scholar 

  218. Mehdi, M., Menon, M. K. C., Seyoum, N., Bekele, M., Tigeneh, W., and Seifu, D. (2018) Blood and tissue enzymatic activities of GDH and LDH, index of glutathione, and oxidative stress among breast cancer patients attending referral hospitals of Addis Ababa, Ethiopia: hospital-based comparative cross-sectional study, Oxid. Med. Cell. Longev., 2018, 6039453, https://doi.org/10.1155/2018/6039453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Moreno-Sánchez, R., Marín-Hernández, Á., Gallardo-Pérez, J. C., Pacheco-Velázquez, S. C., Robledo-Cadena, D. X., Padilla-Flores, J. A., Saavedra, E., and Rodríguez-Enríquez, S. (2020) Physiological role of glutamate dehydrogenase in cancer cells, Front. Oncol., 10, 429, https://doi.org/10.3389/fonc.2020.00429.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Sharma, S., Agnihotri, N., and Kumar, S. (2022) Targeting fuel pocket of cancer cell metabolism: a focus on glutaminolysis, Biochem. Pharmacol., 198, 114943, https://doi.org/10.1016/j.bcp.2022.114943.

    Article  CAS  PubMed  Google Scholar 

  221. Vettore, L., Westbrook, R. L., and Tennant, D. A. (2020) New aspects of amino acid metabolism in cancer, Br. J. Cancer, 122, 150-156, https://doi.org/10.1038/s41416-019-0620-5.

    Article  CAS  PubMed  Google Scholar 

  222. Bedi, M., Ray, M., and Ghosh, A. (2022) Active mitochondrial respiration in cancer: a target for the drug, Mol. Cell. Biochem., 477, 345-361, https://doi.org/10.1007/s11010-021-04281-4.

    Article  CAS  PubMed  Google Scholar 

  223. Turke, A., Song, Y., Costa, C., Cook, R., Arteaga, C., and Asara, J. (2012) Dichloroacetate reverses the Warburg effect, inhibiting growth and sensitizing breast cancer cells towards apoptosis, Cancer Res., 72, 3228-3228, https://doi.org/10.1158/0008-5472.CAN-11-3747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Tataranni, T., and Piccoli, C. (2019) Dichloroacetate (DCA) and cancer: an overview towards clinical applications, Oxid. Med. Cell. Longev., 2019, 8201079, https://doi.org/10.1155/2019/8201079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Ishiguro, T., Ishiguro, R. H., Ishiguro, M., Toki, A., and Terunuma, H. (2022) Synergistic anti-tumor effect of dichloroacetate and ivermectin, Cureus, 14, e21884, https://doi.org/10.7759/cureus.21884.

    Article  PubMed  PubMed Central  Google Scholar 

  226. Menchikov, L. G., Dzhafarov, M. K., and Zavarzin, I. V. (2022) Recent advances in avermectins chemistry, Russ. Chem. Rev., 91, RCR5051, https://doi.org/10.1070/RCR5051.

    Article  Google Scholar 

  227. Awais, M., Aizaz, A., Nazneen, A., Bhatti, Q. u. A., Akhtar, M., Wadood, A., and Atiq Ur Rehman, M. (2022) A review on the recent advancements on therapeutic effects of ions in the physiological environments, Prosthesis, 4, 263-316, https://doi.org/10.3390/prosthesis4020026.

    Article  Google Scholar 

  228. Cho, J. M., Chae, J., Jeong, S. R., Moon, M. J., Shin, D. Y., and Lee, J. H. (2020) Immune activation of Bio-Germanium in a randomized, double-blind, placebo-controlled clinical trial with 130 human subjects: therapeutic opportunities from new insights, PLoS One, 15, e0240358, https://doi.org/10.1371/journal.pone.0240358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Lukevics, E., Gar, T. K., Ignatovich, L. M., and Mironov, V. F. (1990) Biological Activity of Germanium Compounds [in Russian], Zinatne, Riga.

  230. Kamil, Z. H., and Ewadh, M. J. (2016) Determination of serum trace elements and haematological parameters in lymphoma patients receiving chemotherapy, J. Babylon Univ. Pure Appl. Sci., 24, 2489-2500.

    Google Scholar 

  231. Cheng, X., Zhou, Y.-C., Zhou, B., Huang, Y.-C., Wang, G.-Z., and Zhou, G.-B. (2019) Systematic analysis of concentrations of 52 elements in tumor and counterpart normal tissues of patients with non-small cell lung cancer, Cancer Med., 8, 7720-7727, https://doi.org/10.1002/cam4.2629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Chen, X.-C., Zhu, Y.-G., Zhu, L.-A., Huang, C., Chen, Y., Chen, L.-M., Fang, F., Zhou, Y.-C., and Zhao, C.-H. (2003) Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress, Eur. J. Pharmacol., 473, 1-7, https://doi.org/10.1016/S0014-2999(03)01945-9.

    Article  CAS  PubMed  Google Scholar 

  233. Ahuja, A., Kim, J. H., Kim, J.-H., Yi, Y.-S., and Cho, J. Y. (2018) Functional role of ginseng-derived compounds in cancer, J. Ginseng Res., 42, 248-254, https://doi.org/10.1016/j.jgr.2017.04.009.

    Article  PubMed  Google Scholar 

  234. Najafi, T. F., Bahri, N., Tohidinik, H. R., Feyz, S., Bloki, F., Savarkar, S., and Jahanfar, S. (2021) Treatment of cancer-related fatigue with ginseng: A systematic review and meta-analysis, J. Herb. Med., 28, 100440, https://doi.org/10.1016/j.hermed.2021.100440.

    Article  Google Scholar 

  235. Sadeghian, M., Rahmani, S., Zendehdel, M., Hosseini, S. A., and Zare Javid, A. (2021) Ginseng and cancer-related fatigue: a systematic review of clinical trials, Nutr. Cancer, 73, 1270-1281, https://doi.org/10.1080/01635581.2020.1795691.

    Article  CAS  PubMed  Google Scholar 

  236. Hong, H., Baatar, D., and Hwang, S. G. (2021) Anticancer activities of ginsenosides, the main active components of ginseng, Evid. Based Complement. Alternat. Med., 2021, 8858006, https://doi.org/10.1155/2021/8858006.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Unakar, N. J., Tsui, J., and Johnson, M. (1997) Effect of pretreatment of germanium-132 on Na+-K+-ATPase and galactose cataracts, Curr. Eye Res., 16, 832-837, https://doi.org/10.1076/ceyr.16.8.832.8980.

    Article  CAS  PubMed  Google Scholar 

  238. Ward, S. G., and Taylor, R. C. (1988) Antitumor Activity of the Main-Group Metallic Elements: Aluminum, Gallium, Indium, Thallium, Germanium, Antimony, and Bismuth, in Metal-Based Antitumor Drugs (Gielen, M., ed.) Freund Publ. House Ltd., Tel Aviv, Israel, pp. 1-54.

  239. Menchikov, L. G., and Ignatenko, M. A. (2012) Biological activity of organogermanium compounds (a review), Pharm. Chem. J., 46, 635-638, https://doi.org/10.1007/s11094-013-0860-2.

    Article  CAS  Google Scholar 

  240. Asai, K. (1980) The Miracle Cure: Organic Germanium, Japan Publications, New York.

  241. Mainwaring, M. G., Poor, C., Zander, D. S., and Harman, E. (2000) Complete remission of pulmonary spindle cell carcinoma after treatment with oral germanium sesquioxide, Chest, 117, 591-593, https://doi.org/10.1378/chest.117.2.591.

    Article  CAS  PubMed  Google Scholar 

  242. Chase, T. A., Cupp, M. J., and Tracy, T. S. (2003) Germanium. in Dietary Supplements: Toxicology and Clinical Pharmacology (Cupp, M. J., and Tracy, T. S., eds) Humana Press, Totowa, NJ, pp. 197-207, https://doi.org/10.1385/1-59259-303-8:197.

  243. Nakamura, T., Shimada, Y., Takeda, T., Sato, K., Akiba, M., and Fukaya, H. (2015) Organogermanium compound, Ge-132, forms complexes with adrenaline, ATP and other physiological cis-diol compounds, Fut. Med. Chem., 7, 1233-1246, https://doi.org/10.4155/fmc.15.62.

    Article  CAS  Google Scholar 

  244. Kim, E., Hwang, S.-U., Yoon, J. D., Jeung, E.-B., Lee, E., Kim, D. Y., and Hyun, S.-H. (2017) Carboxyethylgermanium sesquioxide (Ge-132) treatment during in vitro culture protects fertilized porcine embryos against oxidative stress induced apoptosis, J. Reprod. Dev., 63, 581-590, https://doi.org/10.1262/jrd.2017-020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wada, T., Hanyu, T., Nozaki, K., Kataoka, K., Kawatani, T., Asahi, T., and Sawamura, N. (2018) Antioxidant activity of Ge-132, a synthetic organic germanium, on cultured mammalian cells, Biol. Pharm. Bull., 41, 749-753, https://doi.org/10.1248/bpb.b17-00949.

    Article  CAS  PubMed  Google Scholar 

  246. Gerber, G. B., and Leonard, A. (1997) Mutagenicity, carcinogenicity and teratogenicity of germanium compounds, Mutat. Res. Rev. Mutat. Res., 387, 141-146, https://doi.org/10.1016/S1383-5742(97)00034-3.

    Article  CAS  Google Scholar 

  247. Kaplan, B. J., Parish, W. W., Andrus, G. M., Simpson, J. S. A., and Field, C. J. (2004) Germane facts about germanium sesquioxide: I. Chemistry and anticancer properties, J. Altern. Complement. Med., 10, 337-344, https://doi.org/10.1089/107555304323062329.

    Article  PubMed  Google Scholar 

  248. Kaplan, B. J., Andrus, G. M., and Parish, W. W. (2004) Germane facts about germanium sesquioxide: II. Scientific error and misrepresentation, J. Altern. Complement. Med., 10, 345-348, https://doi.org/10.1089/107555304323062338.

    Article  PubMed  Google Scholar 

  249. Killilea, D. W., and Killilea, A. N. (2022) Mineral requirements for mitochondrial function: a connection to redox balance and cellular differentiation, Free Radic. Biol. Med., 182, 182-191, https://doi.org/10.1016/j.freeradbiomed.2022.02.022.

    Article  CAS  PubMed  Google Scholar 

  250. Shestov, A. A., Liu, X., Ser, Z., Cluntun, A. A., Hung, Y. P., Huang, L., Kim, D., Le, A., Yellen, G., Albeck, J. G., and Locasale, J. W. (2014) Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step, eLife, 3, e03342, https://doi.org/10.7554/eLife.03342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Shestov, A. A., Lee, S.-C., Nath, K., Guo, L., Nelson, D. S., Roman, J. C., Leeper, D. B., Wasik, M. A., Blair, I. A., and Glickson, J. D. (2016) 13C MRS and LC–MS flux analysis of tumor intermediary metabolism, Front. Oncol., 6, 135, https://doi.org/10.3389/fonc.2016.00135.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Shestov, A. A., Mancuso, A., Lee, S.-C., Guo, L., Nelson, D. S., Roman, J. C., Henry, P.-G., Leeper, D. B., Blair, I. A., and Glickson, J. D. (2016) Bonded cumomer analysis of human melanoma metabolism monitored by 13C NMR spectroscopy of perfused tumor cells, J. Biol. Chem., 291, 5157-5171, https://doi.org/10.1074/jbc.M115.701862.

    Article  CAS  PubMed  Google Scholar 

  253. Shestov, A. A., Nath, K., Nelson, D. S., Wasik, M. A., and Glickson, J. D. (2022) Bonded cumomer analysis of tumor metabolism based on 13C magnetic resonance spectroscopy, NMR Biomed., e4716, https://doi.org/10.1002/nbm.4716.

    Article  PubMed  Google Scholar 

  254. Zhou, Y., Guo, Y., and Tam, K. Y. (2022) Targeting glucose metabolism to develop anticancer treatments and therapeutic patents, Expert Opin. Ther. Pat., 32, 441-453, https://doi.org/10.1080/13543776.2022.2027912.

    Article  CAS  PubMed  Google Scholar 

  255. Kubik, J., Humeniuk, E., Adamczuk, G., Madej-Czerwonka, B., and Korga-Plewko, A. (2022) Targeting energy metabolism in cancer treatment, Int. J. Mol. Sci., 23, 5572, https://doi.org/10.3390/ijms23105572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Warburg, O. (1969) Otto Warburg On The Prime Cause & Prevention of Cancer: Respiration of Oxygen in Normal Body Cells vs. Fermentation of Sugar in Cancer Cells (The Second Revised Edition), Konrad Triltsch, Würzburg.

Download references

Author information

Authors and Affiliations

Authors

Contributions

LM and AP produced the first draft of manuscript. AS was involved in the critical review of the drafts and adding Quantitative metabolism and metabolomics of tumor processes. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Anatoliy V. Popov.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Translated from Uspekhi Biologicheskoi Khimii, 2023, Vol. 63, pp. 3-40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menchikov, L.G., Shestov, A.A. & Popov, A.V. Warburg Effect Revisited: Embodiment of Classical Biochemistry and Organic Chemistry. Current State and Prospects. Biochemistry Moscow 88 (Suppl 1), S1–S20 (2023). https://doi.org/10.1134/S0006297923140018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923140018

Keywords

Navigation