Skip to main content
Log in

The aging of the 2000 and 2011 Hallmarks of Cancer reviews: A critique

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

ABSTRACT

Two review articles published in 2000 and 2011 by Hanahan and Weinberg have dominated the discourse about carcinogenesis among researchers in the recent past. The basic tenets of their arguments favour considering cancer as a cell-based, genetic disease whereby DNA mutations cause uncontrolled cell proliferation. Their explanation of cancer phenotypes is based on the premises adopted by the somatic mutation theory (SMT) and its cell-centered variants. From their perspective, eight broad features have been identified as so-called ‘Hallmarks of Cancer’. Here, we criticize the value of these features based on the numerous intrinsic inconsistencies in the data and in the rationale behind SMT. An alternative interpretation of the same data plus data mostly ignored by Hanahan and Weinberg is proposed, based instead on evolutionarily relevant premises. From such a perspective, cancer is viewed as a tissue-based disease. This alternative, called the tissue organization field theory, incorporates the premise that proliferation and motility are the default state of all cells, and that carcinogenesis is due to alterations on the reciprocal interactions among cells and between cells and their extracellular matrix. In this view, cancer is development gone awry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. To avoid repetitions of the names of Hanahan and Weinberg and ‘The hallmarks of cancer’ articles from 2000 and 2011, we will use the acronyms H&W, and Hallmarks I and Hallmarks II, respectively.

  2. In Longo et al. (2012), we criticize the use of metaphors in biology.

  3. The success of molecular biology techniques when sequencing the human and other genomes exposed the unsustainability of reductionistic, of linear thinking, genetic determinism and additional failed ideologies. These issues are analysed in the book Genetic explanations: Sense and nonsense (eds) S Krimsky and J Gruber 2013 (Cambridge, MA: Harvard University Press).

References

  • Agathocleous M, Love NK, Randlett O, Harris JJ, Liu J, Murray AJ and Harris WA 2012 Metabolic differentiation in the embryonic retina. Nat. Cell Biol. 14:859–864

    Article  PubMed  CAS  Google Scholar 

  • Alberts B 2010 Model organisms and human health. Science 330 1724

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K and Walter P 2008 Molecular biology of the cell (London: Garland Science)

    Google Scholar 

  • Ayala FJ 1968 Biology as an autonomous science. Am. Sci. 56 207–221

    PubMed  CAS  Google Scholar 

  • Baker SG 2012 Paradoxes in carcinogenesis should spur new avenues of research: An historical perspective. Disruptive Sci. Technol. 1 100–107

    Article  Google Scholar 

  • Baker SG 2013 Paradox-driven cancer research. Disruptive Sci. Technol. 1 143–148

    Article  Google Scholar 

  • Baserga R 1976 Multiplication and division of mammalian cells (New York, NY: M Dekker)

    Google Scholar 

  • Bertolaso M 2011 Hierarchies and causal relationships in interpretative models of the neoplastic process. Hist. Phil. Life Sci. 33 515–535

    Google Scholar 

  • Bishop JM 1991 Molecular themes in oncogenesis. Cell 64 235–248

    Article  PubMed  CAS  Google Scholar 

  • Bizzarri M, Cucina A, Conti F and D’Anselmi F 2008 Beyond the oncogene paradigm: understanding complexity in cancerogenesis. Acta Biotheor. 56 173–196

    Article  PubMed  CAS  Google Scholar 

  • Booth BW, Boulanger CA, Anderson LH and Smith GH 2011 The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene 30 679–689

    Article  PubMed  CAS  Google Scholar 

  • Brumfiel G 2012 Theorists feast on Higgs data. Nature 487 281

    Article  PubMed  CAS  Google Scholar 

  • Bussard KM, Boulanger CA, Booth BW, Bruno RD and Smith GH 2010 Reprogramming human cancer cells in the mouse mammary gland. Cancer Res. 70 6336–6343

    Article  PubMed  CAS  Google Scholar 

  • Cardiff RD, Ward JM and Barthold SW 2008 ‘One medicine—one pathology’: are veterinary and human pathology prepared? Lab Invest. 88 18–26

    Article  PubMed  Google Scholar 

  • Cohen S 1965 Growth factors and morphogenic induction; in Developmental and metabolic control mechanisms and neoplasia (Baltimore, MD: Williams and Wilkins) pp 251–272

  • Cohen S and Elliot GA 1962 The stimulation of epidermal keratinization by a protein isolated from the submaxillary gland of the mouse. J. Invest. Dermat. 49 1–5

    Google Scholar 

  • Cooper GM 1997 The cell: A molecular approach (Washington: ASM Press)

    Google Scholar 

  • Drach JC, Thomas MA, Barnett JW, Smith SH and Shipman C Jr 1981 Tritiated thymidine incorporation does not measure DNA synthesis in ribavirin-treated human cells. Science 212 549–551

    Article  PubMed  CAS  Google Scholar 

  • Duda DG, Duyverman AM, Kohno M, Snuderl M, Steller EJ, Fukumura D and Jain RK 2010 Malignant cells facilitate lung metastasis by bringing their own soil. Proc. Natl. Acad. Sci. USA 107 21677–21682

    Article  PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ and Schreiber RD 2004 The three Es of cancer immunoediting. Annu. Rev. Immunol. 22 329–360

    Article  PubMed  CAS  Google Scholar 

  • Durum SK and Muegge K 1998 Cytokine knockouts (Totowa: Humana Press)

    Google Scholar 

  • Ebos JM and Kerbel RS 2011 Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat. Rev. Clin. Oncol. 8 210–221

    Article  PubMed  CAS  Google Scholar 

  • Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC and Weinberg RA 2001 Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev. 15 50–65

    Article  PubMed  CAS  Google Scholar 

  • Enderling H, Anderson AR, Chaplain MA, Beheshti A, Hlatky L and Hahnfeldt P 2009 Paradoxical dependencies of tumor dormancy and progression on basic cell kinetics. Cancer Res. 69 881–821

    Article  Google Scholar 

  • Enderling H and Hahnfeldt P 2011 Cancer stem cells in solid tumors: Is ‘evading apoptosis’ a hallmark of cancer? Prog. Biophys. Mol. Biol. 106 391–399

    Article  PubMed  Google Scholar 

  • Fuchs EJ and Matzinger P 1996 Is cancer dangerous to the immune system? Semin. Immunol. 8 271–280

    Article  PubMed  CAS  Google Scholar 

  • Garraway LV and Lander EC 2013 Lessons from the cancer genome. Cell 153 17–37

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF 2010 Developmental biology (Sunderland: Sinauer Associates, Inc)

    Google Scholar 

  • Hanahan D and Weinberg RA 2000 The hallmarks of cancer. Cell 100 57–70

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D and Weinberg RA 2011 Hallmarks of cancer: the next generation. Cell 144 646–674

    Article  PubMed  CAS  Google Scholar 

  • Harris H 2004 Tumor suppression: putting on the breaks. Nature 427 201

    Article  PubMed  CAS  Google Scholar 

  • Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM and Postovit LM 2007 Reprogramming metastatic tumour cells with embryonic microenvironments. Nat. Rev. Cancer 7 246–255

    Article  PubMed  CAS  Google Scholar 

  • Illmensee K and Mintz B 1976 Totipotency and normal differentiation of single teratocarcinoma cell cloned by injection into blastocysts. Proc. Nat. Acad. Sci. USA 73 549–553

    Article  PubMed  CAS  Google Scholar 

  • Institute of Medicine 2013 Delivering affordable cancer care in the 21st century:Workshop summary (Washington DC: The National Academies Press)

    Google Scholar 

  • Interagency Breast Cancer & Environmental Research Coordinating Committee. 2013 Breast cancer and the environment: Prioritizing prevention ( http://www.niehs.nih.gov/about/assets/docs/ibcercc_full.pdf )

  • Jacobsen K, Groth A and Willumsen B 2002 Ras inducible immortalized fibroblasts: focus formation without cell cycle deregulation. Oncogene 21 3058–3067

    Article  PubMed  CAS  Google Scholar 

  • Kaiser J 2012 Profile: Bert Vogelstein. Cancer genetics with an edge. Science 337 282–284

    Article  PubMed  Google Scholar 

  • Laconi E 2007 The evolving concept of tumor microenvironments. BioEssays 29 738–744

    Article  PubMed  CAS  Google Scholar 

  • Lazebnik Y 2010 What are the hallmarks of cancer? Nat. Rev. Cancer 10 232–233

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R 1986 The nerve growth factor: thirty-five years later. The Nobel Lectures 279–299

  • Levine AJ 2011 Introduction: The changing directions of p53 research. Genes Cancer 2 382–384

    Article  PubMed  Google Scholar 

  • Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D and Darnell J 2000 Overview of the cell cylce and its control; in Molecular cell biology (New York: W.H.Freeman)

  • Longo G, Miquel P-A, Sonnenschein C and Soto AM 2012 Is information a proper observable for biological organization? Prog. Biophys. Mol. Biol. 109 108–14

    Article  PubMed  CAS  Google Scholar 

  • Lundberg AS, Randell SH, Stewart SA, Elenbaas B, Hartwell KA, Brooks MW, Fleming MD, et al. 2002 Immortalization and transformation of primary human airway epithelial cells by gene transfer. Oncogene 21 4577–4586

    Article  PubMed  CAS  Google Scholar 

  • Luria SE 1975 Lecture 1; in 36 Lectures in biology (Cambridge: MIT Press) pp 3–14

  • Maffini MV, Calabro JM, Soto AM and Sonnenschein C 2005 Stromal regulation of neoplastic development: Age-dependent normalization of neoplastic mammary cells by mammary stroma. Am. J. Pathol. 167 1405–1410

    Article  PubMed  Google Scholar 

  • Maffini MV, Soto AM, Calabro JM, Ucci AA and Sonnenschein C 2004 The stroma as a crucial target in rat mammary gland carcinogenesis. J. Cell Sci. 117 1495–1502

    Article  PubMed  CAS  Google Scholar 

  • Marcum JA 2005 Metaphysical presuppositions and scientific practices: Reductionism and organicism in cancer research. Int. Stud. Philos. Sci. 19 31–45

    Article  Google Scholar 

  • Miklos GLG 2005 The human cancer genome project - one more mistep in the war on cancer. Nat. Biotechnol. 23 535–537

    Article  Google Scholar 

  • Mintz B and Ilmensee K 1975 Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Nat. Acad. Sci. USA 72 3585–3589

    Article  PubMed  CAS  Google Scholar 

  • Nijhawan D, Zack TI, Ren Y, Strickland MR, Lamothe R, Schumacher SE, Tsherniak A, Besche HC, et al. 2012 Cancer vulnerabilities unveiled by genomic loss. Cell 150 842–854

    Article  PubMed  CAS  Google Scholar 

  • Pitot HC 2002 Fundamentals of oncology (New York: Marcel Decker)

    Book  Google Scholar 

  • Podlaha O, Riester M, De S and Michor F 2012 Evolution of the cancer genome. Trends Genet. 28 155–163

    Article  PubMed  CAS  Google Scholar 

  • Rather LJ 1978 The genesis of cancer (Baltimore: Johns Hopkins University Press)

    Google Scholar 

  • Rubin H 2011a Fields and field cancerization: the preneoplastic origins of cancer: asymptomatic hyperplastic fields are precursors of neoplasia, and their progression to tumors can be tracked by saturation density in culture. BioEssays 33 224–231

    Article  PubMed  Google Scholar 

  • Rubin H 2011b The early history of tumor virology: Rous, RIF, and RAV. Proc. Nat. Acad. Sci. USA 108 14389–14396

    Article  PubMed  CAS  Google Scholar 

  • Scully JL and Edwards PA 1991 Transformation of a mammary epithelial cell line by the v-raf and v-mos oncogenes. Int. J. Cancer 48 128–135

    Article  PubMed  CAS  Google Scholar 

  • Senturk E and Manfredi JJ 2012 Mdm2 and tumorigenesis: evolving theories and unsolved mysteries. Genes Cancer 3 192–198

    Article  PubMed  Google Scholar 

  • Sharov AA, Weiner L, Sharova TY, Siebenhaar F, Atoyan R, Reginato AM, McNamara CA, Funa K, et al. 2003 Noggin overexpression inhibits eyelid opening by altering epidermal apoptosis and differentiation. EMBO J. 22 2992–3003

    Article  PubMed  CAS  Google Scholar 

  • Sonnenschein C and Soto AM 1980 But .. are estrogens per se growth-promoting hormones?. J. Nat. Cancer Inst. 64 211–215

    PubMed  CAS  Google Scholar 

  • Sonnenschein C and Soto AM 1999 The society of cells: Cancer and control of cell proliferation (New York: Springer Verlag)

    Google Scholar 

  • Sonnenschein C and Soto AM 2000 The somatic mutation theory of carcinogenesis: Why it should be dropped and replaced. Mol. Carcinog. 29 1–7

    Article  Google Scholar 

  • Sonnenschein C and Soto AM 2008 Theories of carcinogenesis: an emerging perspective. Semin. Cancer Biol. 18 372–377

    Article  PubMed  CAS  Google Scholar 

  • Sonnenschein C and Soto AM 2011 The death of the cancer cell. Cancer Res. 71 4334–4337

    Article  PubMed  CAS  Google Scholar 

  • Soto AM and Sonnenschein C 1987 Cell proliferation of estrogen-sensitive cells: the case for negative control. Endocr. Rev. 8 44–52

    Article  PubMed  CAS  Google Scholar 

  • Soto AM and Sonnenschein C 2004 The somatic mutation theory of cancer: growing problems with the paradigm? BioEssays 26 1097–1107

    Article  PubMed  CAS  Google Scholar 

  • Soto AM and Sonnenschein C 2011 The tissue organization field theory of cancer: A testable replacement for the somatic mutation theory. BioEssays 33 332–340

    Article  PubMed  Google Scholar 

  • Soto AM and Sonnenschein C 2012 Is systems biology a promising approach to resolve controversies in cancer research? Cancer Cell Int. 12 12

    Article  PubMed  Google Scholar 

  • Soto AM, Sonnenschein C and Miquel P-A 2008 On physicalism and Downward Causation in Developmental and Cancer Biology. Acta Biotheoretica 56 257–274

    Article  PubMed  CAS  Google Scholar 

  • Stutman O 1974 Tumor development after 3-methylcholanthrene in immunologically deficient athymic-nude mice. Science 183 534–536

    Article  PubMed  CAS  Google Scholar 

  • Tallbot SL 2013 The myth of the machine-organism from genetic mechanisms to living beings; in Genetic explanations, sense and nonsense (eds) S Krimsky and J Gruber (Cambridge, MA: Harvard University Press) pp 51–68

    Google Scholar 

  • Tarin D 2011 Cell and tissue interactions in carcinogenesis and metastasis and their clinical significance. Semin. Cancer Biol. 21 72–82

    Article  PubMed  CAS  Google Scholar 

  • Tarin D, Thompson EW and Newgreen DF 2005 The fallacy of epithelial mesenchymal transition in neoplasia. Cancer Res. 65 5996–6000

    Article  PubMed  CAS  Google Scholar 

  • Varmus H and Kumar HS 2013 Addressing the growing international challenge of cancer: a multinational perspective. Sci. Transl. Med. doi:10.1126/scitranslmed.3005899

    PubMed  Google Scholar 

  • Visvader JE 2011 Cells of origin in cancer. Nature 469 314–322

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW 2013 Cancer genome landscapes. Science 339 1546–1558

    Article  PubMed  CAS  Google Scholar 

  • Weinberg RA 1998 One renegade cell: how cancer begins (New York: Basic Books)

    Google Scholar 

  • Weinberg RA 2006 The Biology of Cancer (New York: Taylor & Francis)

    Google Scholar 

  • Wolff S and Bodycote J 1986 Metabolic breakdown of [3H] thymidine and the inability to measure human lymphocyte proliferation by incorporation of radioactivity. Proc. Nat. Acad. Sci. USA 83 4749–4753

    Article  PubMed  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P and Smith A 2008 The ground state of embryonic stem cell self-renewal. Nature 453 519–523

    Article  PubMed  CAS  Google Scholar 

  • Yusuf I and Fruman DA 2003 Regulation of quiescence in lymphocytes. Trends in Immunology 24 380–386

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Cheryl Schaeberle for her help in the editing and the preparation of this manuscript. The work was supported by the Avon Foundation grant no. 02-2011-095 as well as by the National Institute of Environmental Health Sciences, Award Number R01ES08314. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences or the National Institutes of Health.

Note added in proof

In a recent article, researchers committed to the SMT conclude that most mutations in genes proposed to be ‘drivers’ of carcinogenesis, as originally described by The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium, represent instead false positives. This conclusion gleaned from sophisticated data-mining computer models suggests that those alleged driver genes remain elusive and their nature is subject to the premises of the model used to find them (Lawrence MS et al. 2013 Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. DOI: 10.1038/nature12213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M Soto.

Additional information

Corresponding editor: INDRANEEL MITTRA

MS received 28 January 2013; accepted 08 April 2013

Corresponding editor: Indraneel Mittra

[Sonnenschein C and Soto AM 2013 The aging of the 2000 and 2011 Hallmarks of Cancer reviews: A critique. J. Biosci. 38 1–13] DOI 10.1007/s12038-013-9335-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnenschein, C., Soto, A.M. The aging of the 2000 and 2011 Hallmarks of Cancer reviews: A critique. J Biosci 38, 651–663 (2013). https://doi.org/10.1007/s12038-013-9335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9335-6

Keywords

Navigation