Skip to main content

Advertisement

Log in

Cancer heterogeneity and metastasis: life at the edge

  • Review
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

There is abundant evidence that the phenotype of cells the tumor at the stromal interface is distinct from the tumor cells that are within the core. Molecular phenotyping of cells at the edge show that they express higher levels of proteins associated with elevated glycolytic metabolism, including GLUT-1, HIF-1, and CA-IX. An end product of glycolysis is the production of acid, and acidosis of tumors is strongly associated with increased metastatic potential across a wide variety of tumor types. The molecular machinery promoting this export of acid is being defined, with close collaboration between carbonic anhydrases, sodium dependent bicarbonate and monocarboxylate transporters. Neutralization of this acidity can prevent local invasion and metastasis, and this has led to the “acid-mediated invasion hypothesis” wherein export of acid from the tumor into the stroma leads to matrix remodeling, which can promote local invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Napel S et al (2018) Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats. Cancer 124(24):4633–4649

    Article  PubMed  Google Scholar 

  3. Hao JJ et al (2016) Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat Genet 48(12):1500–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ibrahim AN et al (2020) Intratumoral spatial heterogeneity of BTK kinomic activity dictates distinct therapeutic response within a single glioblastoma tumor. J Neurosurg 133(6):1–12

    Article  Google Scholar 

  5. Akram F et al (2020) Exploring MRI based radiomics analysis of intratumoral spatial heterogeneity in locally advanced nasopharyngeal carcinoma treated with intensity modulated radiotherapy. PLoS ONE 15(10):e0240043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Comba A et al (2020) Laser capture microdissection of glioma subregions for spatial and molecular characterization of intratumoral heterogeneity, oncostreams, and invasion. J Vis Exp. https://doi.org/10.3791/60939

  7. Hou W et al (2020) Microenvironment-derived FGF-2 stimulates renal cell carcinoma cell proliferation through modulation of p27Kip1: implications for spatial niche formation and functional intratumoral heterogeneity. Pathobiology 87(2):114–124

    Article  CAS  PubMed  Google Scholar 

  8. Grove O et al (2015) Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS ONE 10(3):e0118261

    Article  PubMed  PubMed Central  Google Scholar 

  9. Perez-Morales J et al (2020) Peritumoral and intratumoral radiomic features predict survival outcomes among patients diagnosed in lung cancer screening. Sci Rep 10(1):10528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu J et al (2018) Intratumoral spatial heterogeneity at perfusion MR imaging predicts recurrence-free survival in locally advanced breast cancer treated with neoadjuvant chemotherapy. Radiology 288(1):26–35

    Article  PubMed  Google Scholar 

  11. Hosny A et al (2018) Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med 15(11):e1002711

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mu W et al (2020) Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun 11(1):5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lloyd MC et al (2016) Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Res 76(11):3136–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tafreshi NK et al (2016) Evaluation of CAIX and CAXII expression in breast cancer at varied O2 levels: CAIX is the superior surrogate imaging biomarker of tumor hypoxia. Mol Imaging Biol 18(2):219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tafreshi NK et al (2014) Carbonic anhydrase IX as an imaging and therapeutic target for tumors and metastases. SubCell Biochem 75:22–254

  16. Lee SH et al (2018) Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo. Br J Cancer 119(5):622–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schito L, Semenza GL (2016) Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2(12):758–770

    Article  PubMed  Google Scholar 

  18. Russell S et al (2017) Pseudohypoxia: life at the edge. In: Ujbari B, Roche B, Thomas F (eds) Ecology and evolution of cancer, vol 1. Academic Press, pp 57–69

  19. Song J, Yang X, Yan LJ (2019) Role of pseudohypoxia in the pathogenesis of type 2 diabetes. Hypoxia (Auckl) 7:33–40

    Article  Google Scholar 

  20. Williamson JR et al (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42(6):801–813

    Article  CAS  PubMed  Google Scholar 

  21. Hayashi Y et al (2018) Pathobiological pseudohypoxia as a putative mechanism underlying myelodysplastic syndromes. Cancer Discov 8(11):1438–1457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reshetnyak YK et al (2008) Energetics of peptide (pHLIP) binding to and folding across a lipid bilayer membrane. Proc Natl Acad Sci USA 105(40):15340–15345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Damaghi M et al (2015) Chronic acidosis in the tumour microenvironment selects for overexpression of LAMP2 in the plasma membrane. Nat Commun 6:8752

    Article  CAS  PubMed  Google Scholar 

  24. Rofstad EK et al (2006) Acidic extracellular pH promotes experimental metastasis of human melanoma cells in athymic nude mice. Cancer Res 66(13):6699–6707

    Article  CAS  PubMed  Google Scholar 

  25. Moellering RE et al (2008) Acid treatment of melanoma cells selects for invasive phenotypes. Clin Exp Metastasis 25(4):411–425

    Article  CAS  PubMed  Google Scholar 

  26. Riemann A et al (2014) Acidic priming enhances metastatic potential of cancer cells. Pflugers Arch 466(11):2127–2138

    Article  CAS  PubMed  Google Scholar 

  27. Riemann A et al (2016) Acidosis Promotes Metastasis Formation by Enhancing Tumor Cell Motility. Adv Exp Med Biol 876:215–220

    Article  CAS  PubMed  Google Scholar 

  28. Riemann A et al (2019) Extracellular Acidosis Modulates the Expression of Epithelial-Mesenchymal Transition (EMT) Markers and Adhesion of Epithelial and Tumor Cells. Neoplasia 21(5):450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gatenby RA et al (2006) Acid-mediated tumor invasion: a multidisciplinary study. Cancer Res 66(10):5216–5223

    Article  CAS  PubMed  Google Scholar 

  30. Estrella V et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Cancer Res 73(5):1524–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robey IF et al (2009) Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Res 69(6):2260–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bailey KM et al (2014) Mechanisms of buffer therapy resistance. Neoplasia 16(4):354–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibrahim-Hashim A et al (2012) Systemic buffers inhibit carcinogenesis in TRAMP mice. The Journal of urology 188(2):624–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ibrahim-Hashim A et al (2012) Reduction of metastasis using a non-volatile buffer. Clin Exp Metastasis 28(8):841–849

    Article  Google Scholar 

  35. Ibrahim-Hashim A et al (2017) Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Med 6(7):1720–1729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamaguchi R, Narui R, Wada H (2020) Effects of alkalization therapy on chemotherapy outcomes in metastatic or recurrent pancreatic cancer. Anticancer Res 40(2):873–880

    Article  CAS  PubMed  Google Scholar 

  37. Hedlund EE et al (2019) Harnessing Induced Essentiality: Targeting Carbonic Anhydrase IX and Angiogenesis Reduces Lung Metastasis of Triple Negative Breast Cancer Xenografts. Cancers (Basel) 11:7

    Article  Google Scholar 

  38. Boedtkjer E et al (2013) Contribution of Na+,HCO3(-)-cotransport to cellular pH control in human breast cancer: a role for the breast cancer susceptibility locus NBCn1 (SLC4A7). Int J Cancer 132(6):1288–1299

    Article  CAS  PubMed  Google Scholar 

  39. Forero-Quintero LS et al (2019) Membrane-anchored carbonic anhydrase IV interacts with monocarboxylate transporters via their chaperones CD147 and GP70. J Biol Chem 294(2):593–607

    Article  CAS  PubMed  Google Scholar 

  40. Noor SI et al (2018) A surface proton antenna in carbonic anhydrase II supports lactate transport in cancer cells. Elife 7:e35176

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ibrahim-Hashim A et al (2017) Defining cancer subpopulations by adaptive strategies rather than molecular properties provides novel insights into intratumoral evolution. Cancer Res 77(9):2242–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Freischel AR et al (2021) Frequency-dependent interactions determine outcome of competition between two breast cancer cell lines. Scientific reports 11(1):4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Damaghi M, Gillies RJ (2016) Lysosomal protein relocation as an adaptation mechanism to extracellular acidosis. Cell cycle 15(13):1659–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rothberg JM et al (2013) Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia 15(10):1125–1137

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mohamed MM, Sloane BF (2006) Cysteine cathepsins: multifunctional enzymes in cancer. Nature reviews Cancer 6(10):764–775

    Article  CAS  PubMed  Google Scholar 

  46. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21(4):228–237

    Article  CAS  PubMed  Google Scholar 

  47. Ji K et al (2019) Acidosis and proteolysis in the tumor microenvironment. Cancer Metastasis Rev 38(1–2):103–12

    Article  PubMed  PubMed Central  Google Scholar 

  48. Swayampakula M et al (2017) The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene 36(45):6244–6261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Colegio OR et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. El-Kenawi A et al (2019) Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer. Br J Cancer 121(7):556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Gillies.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gillies, R.J. Cancer heterogeneity and metastasis: life at the edge. Clin Exp Metastasis 39, 15–19 (2022). https://doi.org/10.1007/s10585-021-10101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10101-2

Keywords

Navigation