Skip to main content
Log in

ζ-Carotene: Generation and Quenching of Singlet Oxygen, Comparison with Phytofluene

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It is known that C40 carotenoids with a short chain of conjugated double bonds (CDB) (5 and 7, respectively) are universal precursors in the biosynthesis of colored carotenoids in plant cells. Previously, using mainly stationary measurements of photosensitized phosphorescence of singlet oxygen (1O2), we discovered that phytofluene efficiently generates 1O2 in aerated solution and therefore, can serve as a source of the UV photodynamic stress in living cells [Ashikhmin et al., Biochemistry (Moscow), 2020, 85, 773]. In the present paper, by using novel pulsed light emitting diodes (LEDs), aerated hexafluorobenzene as a solvent and time-resolved measurements of 1O2 phosphorescence we confirmed that phytofluene efficiently photosensitizes 1O2 formation. The quantum yield of this process according to the novel experiments is about 0.4. An ability to generate 1O2 was also found in aerated solutions of ζ-carotene although the quantum yield of this process is 30-fold lower that in phytofluene solutions. Both carotenoids were found to quench 1O2 in the dark with the quenching rate constants equal to (3.6 ± 0.9)×107 and (2.1 ± 0.2)×108 M–1s–1, respectively. To our knowledge, the rate constant of 1O2 quenching by ζ-carotene has been reported in the present paper for the first time. It follows from the data obtained that the rate constants of 1O2 quenching by both carotenoids are much (by 2-3 orders of magnitude) smaller than the rate constant of the diffusion-limited biomolecular reactions. Hence, both carotenoids are weak protectors against 1O2 oxidative activity. It is more likely that they are potential promoters of photodynamic stress in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

Φ Δ :

quantum yield of 1O2 generation

CDB:

conjugate double bond

1O2 :

singlet oxygen

References

  1. Britton, G. (2008) Functions of Intact Carotenoids, in Carotenoids. Natural Functions (Britton, G., Liaaen-Jensen, S., and Pfanger, H., eds.) Birkhauser Verlag, Switzerland, Vol. 4, pp. 189-212, https://doi.org/10.1007/978-3-7643-7499-0_10.

  2. Mathews-Roth, M. M., Wilson, T., Fujimori, E., and Krinsky, N. (1974) Carotenoid chromophore length and protection against photosensitization, Photochem. Photobiol., 19, 217-222, https://doi.org/10.1111/j.1751-1097.1974.tb06501.x.

    Article  CAS  PubMed  Google Scholar 

  3. Krinsky, N. (1974) Carotenoid protection against oxidation, Pure Appl. Chem., 51, 649-660, https://doi.org/10.1351/pac197951030649.

    Article  Google Scholar 

  4. Bensasson, R., Land, E. J., and Maudinas, B. (1976) Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet pulse irradiation, Photochem. Photobiol., 23, 189-193, https://doi.org/10.1111/j.1751-1097.1976.tb07240.x.

    Article  CAS  PubMed  Google Scholar 

  5. Cogdell, R. J., Howard, T. D., Bittl, R., Schlodder, E., Geisenheimer, I., et al. (2000) How carotenoids protect bacterial photosynthesis, Philos. Trans. R. Soc. B Biol. Sci., 355, 1345-1349, https://doi.org/10.1098/rstb.2000.0696.

    Article  CAS  Google Scholar 

  6. Niedzwiedzki, D. M., Swainsbury, D. J. K., Canniffed, D. P., Hunter, C. N., and Hitchcock, A. (2020) A photosynthetic antenna complex foregoes unity carotenoid-to-bacteriochlorophyll energy transfer efficiency to ensure photoprotection, Proc. Natl. Acad. Sci. USA, 117, 6502-6508, https://doi.org/10.1073/pnas.1920923117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Edge, R., and Truscott, T. G. (2018) Singlet oxygen and free radical reactions of retinoids and carotenoids – a review, Antioxidants, 7, 5-16, https://doi.org/10.3390/antiox7010005.

    Article  CAS  PubMed Central  Google Scholar 

  8. Krasnovsky, A. A., Jr., and Kagan, V. E. (1978) Generation and quenching of singlet oxygen by retinals, Doklady Akademii Nauk SSSR, 242, 229-232.

    Google Scholar 

  9. Krasnovsky, A. A., Jr., and Kagan, V. E. (1979) Photosensitization and quenching of singlet oxygen by pigments and lipids of photoreceptor cells of the retina, FEBS Lett., 108, 152-154, https://doi.org/10.1016/0014-5793(79)81198-9.

    Article  PubMed  Google Scholar 

  10. Ostrovskii, M. A., and Fedorovich, I. B. (1994) Retinal as sensitizer of photodamage of retinal-containing proteins in the retina of the eye, Biophysics, 39, 13-25.

    CAS  Google Scholar 

  11. Krasnovskii, A. A., Jr. (1986) Singlet oxygen in photosynthesizing organisms, Zhurn. Vsesoyuz. Khim. Obsch. im D. I. Mendeleeva (Mendeleev Chem. J.), 31, 562-567.

    CAS  Google Scholar 

  12. Makhneva, Z. K., Erokhin, Yu. E., and Moskalenko, A. A. (2007) Carotenoid photosensitized oxidation of bacteriochlorophyll dimers in light-harvesting complexes B800-850 in Allochromatium minutissimum cells, Dokl. Biochem. Biophys., 416, 256-259, https://doi.org/10.1134/S1607672907050080.

    Article  PubMed  Google Scholar 

  13. Makhneva, Z. K., Bolshakov, M. A., Ashikhmin, A. A., Erokhin, Y. E., and Moskalenko, A. A. (2009) Influence of blue light on the structure stability of antenna complexes from Allochromatium minutissimum with different content of carotenoids, Biochemistry Suppl. Ser. A Membr. Cell Biol., 3, 123-127, https://doi.org/10.1134/S1990747809020032.

    Article  Google Scholar 

  14. Makhneva, Z. K., Ashikhmin, A. A., Bolshakov, M. A., and Moskalenko, A. A. (2020) Carotenoids are probably involved in singlet oxygen generation in the membranes of purple photosynthetic bacteria under light irradiation, Microbiology, 89, 164-173, https://doi.org/10.1134/S0026261720010099.

    Article  CAS  Google Scholar 

  15. Makhneva, Z. K., Ashikhmin, A. A., Bolshakov, M. A., and Moskalenko, A. A. (2019) Bacteriochlorophyll interaction with singlet oxygen in membranes of purple photosynthetic bacteria: does the protective function of carotenoids exist? Dokl. Biochem. Biophys, 486, 216-219, https://doi.org/10.1134/S1607672919030141.

    Article  CAS  PubMed  Google Scholar 

  16. Makhneva, Z. K., Bolshakov, M. A., Moskalenko, A. A. (2021) Carotenoids do not protect bacteriochlorophylls in isolated light-harvesting LH2 complexes of photosynthetic bacteria from destructive interactions with singlet oxygen, Molecules, 26, 5120, https://doi.org/10.3390/molecules26175120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krasnovsky, A. A. Jr., Benditkis, A. S., and Kozlov, A. S. (2019) Kinetic measurements of singlet oxygen phosphorescence in hydrogen-free solvents by time resolved photon counting, Biochemistry (Moscow), 84, 153-163, https://doi.org/10.1134/S000629791902006813.

    Article  CAS  Google Scholar 

  18. Ashikhmin, A. A., Benditkis, A. S., Moskalenko, A. A., and Krasnovsky, A. A. Jr. (2020) Phytofluene as a highly efficient UVA photosensitizer of singlet oxygen generation, Biochemistry (Moscow), 85, 773-780, https://doi.org/10.31857/S0320972520070052.

    Article  CAS  Google Scholar 

  19. Krasnovsky, A. A., Jr., Kovalev, Yu. V., and Faludi-Daniel, A. (1980) Phosphorescence and delayed fluorescence of chlorophyll in mutants of maize with abnormal carotenoid composition, Doklady Akademii Nauk SSSR (Biophysics), 251, 1264-1267.

    Google Scholar 

  20. Imhoff, J. F., and Trüper, H. G. (1977) Ectothiorhodospira halochloris sp. now., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b, Arch. Microbiol., 114, 115-121, https://doi.org/10.1007/BF0041077220.

    Article  CAS  Google Scholar 

  21. Ashikhmin, A., Makhneva, Z., and Moskalenko, A. (2014) The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis, Photosynth. Res., 119, 291-303, https://doi.org/10.1007/s11120-013-9947-6.

    Article  CAS  PubMed  Google Scholar 

  22. Krasnovsky, A. A., Jr. (1976) Photosensitized luminescence of singlet oxygen in solution, Biofizika, 21, 748-749.

    Google Scholar 

  23. Krasnovsky, A. A., Jr. (1979) Photoluminescence of singlet oxygen in pigment solutions, Photochem. Photobiol., 29, 29-36, https://doi.org/10.1111/j.1751-1097.1979.tb09255.x.

    Article  CAS  Google Scholar 

  24. Krasnovsky, A. A., Jr. (1998) Phosphorescence studies of singlet oxygen in photobiochemical systems, Membr. Cell Biol., 12, 665-690.

    PubMed  Google Scholar 

  25. Krasnovsky, A. A. Jr. (2008) Luminescence and photochemical studies of singlet oxygen photonics, J. Photochem. Photobiol. A Chem., 196, 210-218, https://doi.org/10.1016/j.jphotochem.2007.12.015.

    Article  CAS  Google Scholar 

  26. Schweitzer, C., and Schmidt, R. (2003) Physical mechanisms of generation and deactivation of singlet oxygen, Chem. Rev., 103, 1685-1757, https://doi.org/10.1021/cr010371d.

    Article  CAS  PubMed  Google Scholar 

  27. Oliveros, E., Suardi-Murasecco, P., Aminian-Saghafi, T., and Braun, A. M. (1991) 1H-Phenalen-1-one: photophysical properties and singlet oxygen production, Helv. Chim. Acta, 74, 79-90, https://doi.org/10.1002/hlca.19910740110.

    Article  CAS  Google Scholar 

  28. Schmidt, R., Tanelian, C., Dunsbach, R., and Wolf, C. (1994) Phenalenone, a universal compound for the determination of quantum yields of singlet oxygen O2 (1Δg) sensitization, J. Photochem. Photobiol. A Chem., 79, 11-17, https://doi.org/10.1016/1010-6030(93)03746-4.

    Article  CAS  Google Scholar 

  29. Frank, H. A., and Christensen, R. L. (2008) Excited electronic states, photochemistry and photophysics of carotenoids, in Carotenoids, vol. 4, Chapt. 9, pp. 167-188, Birkhaeuser Verlag, Basel.

  30. Mathis, P., and Schenck, C. C. (1982) Functions of carotenoids in photosynthesis, in Carotenoids Chemistry and Biochemistry (Britton, G., and Goodwin, T.W., eds.) Pergamon Press, Oxford, New York, pp. 339-351.

  31. Murov, S. L., Charmichael, I., and Hug, G. L. (1993) Handbook of Photochemistry, Marcel Dekker Inc., New York, Basel, Hong Kong, p. 290.

  32. Cogdell, R. J., Gillbro, T., Andersson, P. O., Liu, R. S. H., and Asato, A. E. (1994) Carotenoids as accessory light-harvesting pigments, Pure Appl. Chem., 66, 1041-1046, https://doi.org/10.1351/pac199466051041.

    Article  CAS  Google Scholar 

  33. Andersson, P. O., Takaichi, S., Cogdell, R. J., and Gillbro, T. (2001) Photophysical characterization of natural cis- carotenoids, Photochem. Photobiol., 74, 549-557, https://doi.org/10.1562/0031-8655(2001)074<0549:pconcc>2.0.co;2.

    Article  CAS  PubMed  Google Scholar 

  34. Andersson, P. O., Bachilo, S. M., Chen, R.-L., and Gillbro, T. (1995) Solvent and temperature effects on dual fluorescence in a series of carotenes. Energy gap dependence of the internal conversion rate, J. Phys. Chem., 99, 16199-16209, https://doi.org/10.1021/j100044a002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank firms Polironik (Moscow) for technical assistance and PiM-Invest (Moscow) for providing and purification of the solvents, as well as Z. A. Zhuravleva (Institute of Basic Biological Problems) for assistance in growing the Ectothiorhodospira haloalkaliphile culture.

Funding

This work was carried out with the partial support of the grant of the President of the Russian Federation for state support of young Russian scientists – candidates of sciences (MK-1352.2021.1.4), the Russian Foundation for Basic Research (grant no. 19-04-00331-a), and state assignments of the FRC of Biotechnology (12241100080-3) and FRC PSCBR (122041100204-3), Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

A. A. Krasnovsky, Jr., A. A. Ashikhmin, A. A. Moskalenko – concept and management of work; A. A. Ashikhmin – extraction of carotenoids; A. A. Krasnovsky, Jr. and A. S. Benditkis – design of devices and experimental measurements; A. A. Ashikhmin, A. S. Benditkis, A. A. Moskalenko, A. A. Krasnovsky, Jr. – discussion of the results; A. A. Krasnovsky, Jr., A. A. Ashikhmin, and A. S. Benditkis – writing and editing the text.

Corresponding author

Correspondence to Alexander A. Krasnovsky Jr..

Ethics declarations

The authors declare no conflicts of interest. This article does not contain description of studies with the involvement of humans or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashikhmin, A.A., Benditkis, A.S., Moskalenko, A.A. et al. ζ-Carotene: Generation and Quenching of Singlet Oxygen, Comparison with Phytofluene. Biochemistry Moscow 87, 1169–1178 (2022). https://doi.org/10.1134/S0006297922100108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922100108

Keywords

Navigation