Skip to main content
Log in

The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The effect of the inhibitor of carotenoid (Car) biosynthesis, diphenylamine (DPA), on the cells of the purple sulfur bacterium Ectothiorhodospira (Ect.) haloalkaliphila has been studied. There occurs an inhibition of the biosynthesis of colored Cars (≥99 %) at 71 μM DPA. Considering “empty” Car pockets (Moskalenko and Makhneva 2012) the content of Cars in the DPA-treated samples is first calculated more correctly. The total content of the colored Cars in the sample at 71 μM DPA does not exceed 1 % of the wild type. In the DPA-treated cells (membranes) a complete set of pigment-protein complexes is retained. The LH2 complex at 71 μM DPA is isolated, which is identical to the LH2 complex of the wild type in near IR absorption spectra. This suggests that the principles for assembling this LH2 complex in vivo in the absence of colored Cars remain the same. These results are in full agreement with the data obtained earlier for Allochromatium (Alc.) minutissimum (Moskalenko and Makhneva 2012). They are as follows: (1) DPA almost entirely inhibits the biosynthesis of the colored Cars in Ect. haloalkaliphila cells. (2) In the DPA-treated samples non-colored Cars are detected at 53.25 μM DPA (as traces) and at 71 μM DPA. (3) DPA may affect both phytoene synthase (at ≤71 μM DPA) and phytoene desaturase (at ≥53.25 μM DPA). (4) The assembly of LH2 complex does occur without any colored Cars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DPA:

Diphenylamine

DPA-treated sample:

A sample isolated from the cells grown with DPA

IR:

Infrared

LH complex:

Light-harvesting complex

RC:

Reaction center

BChl:

Bacteriochlorophyll

Car:

Carotenoid

Car-less:

Carotenoidless

CDB:

Conjugated double bond

References

  • Aargaard J, Sistrom W (1972) Control of synthesis of reaction center bacteriochlorophyll in photosynthetic bacteria. Photochem Photobiol 15:209–225

    Article  Google Scholar 

  • Angerhofer A, Cogdell RG, Hipkins MF (1986) A spectral characterisation of the light-harvesting pigment–protein complexes from Rhodopseudomonas acidophila. Biochim Biophys Acta 848:333–336

    Article  CAS  Google Scholar 

  • Bahatyrova S, Frese RN, Siebert CA, Olsen JD, van der Werf K, van Grondelle OR, van Niederman RA, Bullough PA, Otto C, Hunter CN (2004) The native architecture of a photosynthetic membrane. Nature 430:1058–1062. doi:10.1038/nature02823

    Article  CAS  PubMed  Google Scholar 

  • Bartley GE, Scolnik PA (1989) Carotenoid biosynthesis in photosynthetic bacteria. Gene characterization of the Rhodobacter capsulatus CrtI protein. J Biol Chem 264:13109–13113

    CAS  PubMed  Google Scholar 

  • Bramley PM (1993) Inhibition of carotenoid biosynthesis. In: Young A, Britton G (eds) Carotenoids in photosynthesis. Chapmann and Hall, London, pp 127–159

    Chapter  Google Scholar 

  • Brill C (1963) Studies on bacterial chromatophores. II. Energy transfer and photooxidative bleaching of bacteriochlorophyll in relation to structure in normal and carotenoid-depleted Chromatium. Biochim Biophys Acta 66:50–60

    Article  Google Scholar 

  • Britton G, Singh RK, Goodwin TW, Ben-Aziz A (1975) The carotenoids of Rhodomicrobium vannielii (Rhodospirillaceae) and the effect of diphenylamine on the carotenoid composition. Phytochem 14:2427–2433

    Article  CAS  Google Scholar 

  • Britton G, Singh RK, Malhotra HC, Goodwin TW, Ben-Aziz A (1977) Biosynthesis of 1,2-dihydrocarotenoids in Rhodopseudomonas viridis: experiments with inhibitors. Phytochem 16:1561–1566

    Article  CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids. Handbook. Birkhäuser Verlag, Boston

    Book  Google Scholar 

  • Cogdell RJ, Köhler J (2009) Use of single-molecule spectroscopy to tackle fundamental problems in biochemistry: using studies on purple bacterial antenna complexes as an example. Biochem J 422:193–205. doi:10.1042/BJ20090674

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Scheer H (1985) Circular dichroism of light-harvesting complexes from photosynthetic bacteria. Photochem Photobiol 42:669–678

    Article  CAS  Google Scholar 

  • Cogdell RJ, Hipkins MF, MacDonald W, Truscott TG (1981) Energy transfer between the carotenoid and bacteriochlophyll within the B800–850 light-harvesting pigment–protein complex of Rps. sphaeroides. Biochim Biophys Acta 634:191–202

    Article  CAS  PubMed  Google Scholar 

  • Cogdell RJ, Isaacs NW, Howard TD, McLuskey K, Fraser NJ, Prince SM (1999) How photosynthetic bacteria harvest solar energy. J Bacteriol 181:3869–3879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cogdell RJ, Gall A, Köhler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria from single molecules to in vivo membranes. Q Rev Biophys 39:227–324. doi:10.1017/S0033583506004434

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Bazire G, Stanier RY (1958) Inhibition of carotenoid synthesis in photosynthetic bacteria: specific inhibition of carotenoid synthesis in a photosynthetic bacterium and its physiological consequences. Nature 181:250–252

    Article  CAS  PubMed  Google Scholar 

  • Davidson E, Cogdell RJ (1981) The polypeptide composition of the B850 light-harvesting pigment–protein complex from Rhodopseudomonas sphaeroides R 26.1. FEBS Lett 132:81–84

    Article  CAS  Google Scholar 

  • Davis BH (1970) A novel sequence for phytoene degydrogenation in Rhodospirillum rubrum. Biochem J 116:93–99

    Google Scholar 

  • Freer A, Prince S, Sauer K, Papiz M, Hawthornthwaite-Lawless A, McDermott G, Cogdell R, Isaacs NW (1996) Pigment–pigment interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure 4:449–462

    Article  CAS  PubMed  Google Scholar 

  • Fuller RC, Anderson LC (1958) Suppression of carotenoid synthesis and its effect on the activity of photosynthetic bacterial chromatophores. Nature 181:252–254

    Article  CAS  PubMed  Google Scholar 

  • Gabrielsen M, Gardiner AT, Cogdell RJ (2008) Peripheral complexes of purple bacteria. In: Daldal F, Thurnauer MC, Beatty JT, Hunter CN (eds) The purple phototrophic bacteria. Springer, New York, pp 135–153

    Google Scholar 

  • Gall A, Henry S, Takaichi S, Bruno R, Cogdell RJ (2005) Preferential incorporation of colored-carotenoids occurs in the LH2 complexes from non-sulphur purple bacteria under carotenoid-limiting conditions. Photosynth Res 86:25–35

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Asua G, Cogdell RJ, Hunter CN (2002) Functional assembly of the foreign carotenoid lycopene into the photosynthetic apparatus of Rhodobacter sphaeroides, achieved by replacement of the native 3-step phytoene desaturase with its 4-step counterpart from Erwinia herbicola. Mol Microbiol 44:233–244

    Article  CAS  PubMed  Google Scholar 

  • Georgakopoulou S, Frese RN, Johnson E, Koolhaas C, Coldell RJ, van Gronrelle R, van der Zwan G (2002) Absorption and CD spectroscopy and modeling of various LH2 complexes from purple bacteria. Biophys J 82:2184–2197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giuliano G, Pollock D, Scolnik PA (1986) The gene crtI mediates the conversion of phytoene into colored carotenoids in Rhodopseudomonas capsulata. J Biol Chem 261:12925–12929

    CAS  PubMed  Google Scholar 

  • Goodwin TW (1956) The carotenoids of photosynthetic bacteria. II. The carotenoids of a number of non-sulphur purple photosynthetic bacteria (Athiorhodiaceae). Arch Microbiol 24:313–322

    CAS  Google Scholar 

  • Goodwin TW (1980) The biochemistry of carotenoids plants. Chapman and Hall, London

    Book  Google Scholar 

  • Goodwin TW, Osman HG (1953) Studies in carotenogenesis. General cultural conditions controlling carotenoid (spirilloxanthin) synthesis in the photosynthetic bacterium Rhodospirillum rubrum. Biochem J 53:541–546

    CAS  PubMed  Google Scholar 

  • Grondelle VR, Decker JP, Gillbro T, Sundstrom V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta Bioenerg 1187:1–65

    Article  CAS  Google Scholar 

  • Hawthornthwaite AM, Cogdell RJ (1991) Bacteriochlorophylls-binding proteins. In: Scheer H (ed) Chlorophylls. CRC Press, Boca Raton, pp 493–528

    Google Scholar 

  • Hu XC, Ritz T, Damjanovic A, Autenrieth F, Schulten K (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35:1–62. doi:10.1017/S0033583501003754

    Article  CAS  PubMed  Google Scholar 

  • Hunter CN (1995) Genetic manipulation of antenna complexes of purple bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 473–501

    Google Scholar 

  • Hunter CN, van Grondell R, van Dorssen RJ (1989) The construction and properties of a mutant of Rhodobacter sphaeroides with the LH1 antenna as the sole pigment–protein. Biochim Biophys Acta 973:383–389

    Article  CAS  Google Scholar 

  • Imhoff JF, Süling J (1996) The phylogenetic relationship among Ectothiorhodospiraceae: a reevaluation of their taxonomy on the basis of 16S rDNA analyses. Arch Microbiol 165:106–113

    Article  CAS  PubMed  Google Scholar 

  • Imhoff JF, Trüper HG (1977) Ectothiorhodospira halochloris sp. now., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch Microbiol 114:115–121

    Article  CAS  Google Scholar 

  • Jones MR, Fowler GJ, Gibson LC, Grief GG, Olsen JD, Crielaard W, Hunter CN (1992) Mutants of Rhodobacter sphaeroides lacking one or more pigment–protein complexes and complementation with reaction-centre, LH1, and LH2 genes. Mol Microbiol 6:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Kovacs AT, Rakhely G, Kovacs KL (2003) Genes involved in the biosynthesis of photosynthetic pigments in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl Environ Microbiol 69:3093–3102. doi:10.1128/AEM.69.6.3093- 3102.2003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koyama Y, Kakitani Y, Watanabe Y (2005) Photophysical properties and light-harvesting and photoprotective functions of carotenoids in bacterial photosynthesis: structural selections. In: Primary Processes of Photosynthesis, RSC Publishing, pp 153–201. doi:10.1039/9781847558152-00151

  • Lang HP, Hunter CN (1994) The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides. Biochem J 298:197–205

    CAS  PubMed  Google Scholar 

  • Liaaen-Jensen S, Cohen-Basire G, Nakayama TO, Stanier RY (1958) The path of carotenoid synthesis in a photosynthetic bacterium. Biochim Biophys Acta 29:477–498

    Article  Google Scholar 

  • Linnanto J, Korppi-Tommola JEI, Helenius VM (1999) Electronic states, absorption and CD spectra of the photosynthetic bacterial LH2 antenna of Rhodopseudomonas acidophila as predicted by exciton theory and semi-empirical calculations. J Phys Chem B 103:8739–8750

    Article  CAS  Google Scholar 

  • Loach PA, Parkes-Loach PS (1995) Structure-function relation-ships in core light-harvesting complexes (LH1) as determined by characterization of the structural subunit and by reconstitution experiments. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer, Dordrecht, pp 437–471

    Google Scholar 

  • Makhneva Z, Bolshakov M, Moskalenko A (2008) Heterogeneity of carotenoid content and composition in LH2 of the sulphur purple bacterium Allochromatium minutissimum grown under carotenoid-biosynthesis inhibition. Photosynth Res 98:633–641. doi:10.1007/s11120-008-9384-0

    Article  CAS  PubMed  Google Scholar 

  • Makhneva ZK, Bolshakov MA, Ashikhmin AA, Erokhin YuE, Moskalenko AA (2009) Influence of blue light on the structure stability of antenna complexes from Allochromatium minutissimum with different content of carotenoids. Biochem (Moscow) supplement series A. Membrane and Cell Biology 3:123–127. doi:10.1134/S1990747809020032

    Google Scholar 

  • McDermot G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ, Isaacs NW (1995) Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374:517–521

    Article  Google Scholar 

  • Moskalenko AA, Erokhin YE (1974) Isolation of pigment–lipoprotein complexes from purple photosynthesizing bacteria by the method of preparative polyacrylamide gel electrophoresis. Mikrobiol 43:654–658 (In Russian)

    CAS  Google Scholar 

  • Moskalenko AA, Erokhin YE (1981) The structural role of carotenoids in the organization of pigment–protein complexes of purple photosynthetic bacteria. USSR Academy of Sciences, Pushchino

    Google Scholar 

  • Moskalenko AA, Karapetyan NV (1996) Structural role of carotenoids in photosynthetic membranes. Z Naturforsch 51:763–771

    CAS  Google Scholar 

  • Moskalenko AA, Makhneva ZK (2012) Light-harvesting complexes from purple sulfur bacteria Allochromatium minutissimum assembled without carotenoids. J Photochem Photobiol 108:1–7. doi:10.1016/j.jphotobiol.2011.11.006

    Article  CAS  Google Scholar 

  • Moskalenko AA, Britton G, Connor A, Young A, Toropygina O (1991) The carotenoid content in the chromatophores and pigment–protein complexes isolated from cells of Chromatium minutissimum. Biol Membr USSR 8:249–260 (in Russian)

    CAS  Google Scholar 

  • Moskalenko AA, Toropygina OA, Makhneva ZK (1997) Behavior of carotenoids in Rhodospirillum rubrum cells under cultivation with diphenylamine. Dokl Akad Nauk 355:259–261 (In Russian)

    Google Scholar 

  • Moskalenko AA, Makhneva ZK, Fiedor L, Scheer H (2005) Effects of carotenoid inhibition on the photosynthetic RC–LH1 complex in purple sulphur bacterium Thiorhodospira sibirica. Photosynth Res 86:71–80

    Article  CAS  PubMed  Google Scholar 

  • Papiz MZ, Prince SM, Howard T, Cogdell RJ, Isaacs NW (2003) The structure and thermal motion of the B800–850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: new structural features and functionally relevant motions. J Mol Biol 326:1523–1538. doi:10.1016/S0022-2836(03)00024-X

    Article  CAS  PubMed  Google Scholar 

  • Parson WW, Warshel A (2008) Mechanism of charge separation in purple bacterial reaction centers. In: Daldal F, Thurnauer MC, Beatty JT, Hunter CN (eds) The purple phototrophic bacteria. Springer, New York, pp 355–377

    Google Scholar 

  • Prince SM, Papiz MZ, Freer AA, McDermott G, Hawthornthwaite-Lawless AM, Cogdell RJ, Isaacs NW (1997) Apoprotein structure in the LH2 complex from Rhodopseudomonas acidophila strain 10050: modular assembly and protein–pigment interactions. J Mol Biol 268:412–423

    Article  CAS  PubMed  Google Scholar 

  • Prince SM, Howard TD, Myles DA, Wilkinson C, Papiz MZ, Freer AA, Cogdell RJ, Isaacs NW (2003) Detergent structure in crystals of the integral membrane light-harvesting complex LH2 from Rhodopseudomonas acidophila strain 10050. J Mol Biol 326:307–315. doi:10.1016/S0022-2836(02)01361-X

    Article  CAS  PubMed  Google Scholar 

  • Rilling HC (1965) A study of inhibition of carotenoid synthesis. Arch Biochem Biophys 110:39–46

    Article  CAS  PubMed  Google Scholar 

  • Roszak AW, Howard TD, Southall J, Gardiner AT, Law CJ, Isaacs NW, Cogdell RJ (2003) Crystal structure of RC-LH1 core complex from Rhodopseudomonas palustris. Science 203:1969–1972. doi:10.1126/science.1088892

    Article  Google Scholar 

  • Salton MRJ, Schmitt MD (1967) Effects of diphenylamine on carotenoids and menaquinones in bacterial membranes. Biochim Biophys Acta 135:196–207

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G (1997) High level expression of carotenogenic genes for enzyme purification and biochemical characterization. Pure Appl Chem 69:2163–2168

    Article  CAS  Google Scholar 

  • Scheuring S, Seguin J, Marco S, Levy D, Robert B, Rigaud J-L (2003) Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. Proc Nat Acad Sci 100:1690–1693

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K (1978) Biosynthesis of carotenoids. In: Clayton RK, Sistrom WR (eds) The photosynthetic bacteria. Plenum Press, New York, pp 729–750

    Google Scholar 

  • Schwerzmann RU, Bachofen R (1989) Carotenoid profiles in pigment–protein complexes of Rhodospirillum rubrum. Plant Cell Phisiol 30:497–504

    CAS  Google Scholar 

  • Shuvalov VA, Yakovlev AG, Vasilieva LG, Shkuropatov AY (2006) Primary charge separation between P700* and primary electron acceptor complex A–Ao: comparison with bacterial reaction centers. In: Golbeck JH (ed) Photosystem I: the light-driven plastocyanin:ferredoxin oxidoreductase. Series: advances in photosynthesis and respiration. Springer, The Netherlands, pp 291–300

    Google Scholar 

  • Solov’ev AA, Erokhin YuE (2008) Distribution of bacteriochlorophyll between the pigment–protein complexes of the sulfur photosynthesizing bacterium Allochromatium minutissimum depending on light intensity at different temperatures. Microbiol 77:534–540

    Article  Google Scholar 

  • Sturgis JN, Niederman RA (2008) Organization and Assembly of Light-Harvesting Complexes in the Purple Bacterial Membrane. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The Purple Phototrophic Bacteria, pp 253–273

  • Takaichi S (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. In: Frank HA, Young A, Britton G, Cogdell RJ (eds) The photochemistry of carotenoids. Kluwer, Dordrecht, pp 39–69

    Google Scholar 

  • Takaichi S (2008) Distribution and biosynthesis of carotenoids. In: Daldal F, Thurnauer MC, Beatty JT, Hunter CN (eds) The purple phototrophic bacteria. Springer, New York, pp 97–117

    Google Scholar 

  • Telfer A, Pascal A, Gall A (2008) Carotenoids in photosynthesis. In: Britton G, Liaaen-Jensen S, Pfanger H (eds) Carotenoids. Natural functions. Birkhauser Verlag, Switzerland, pp 265–308

    Google Scholar 

  • Thornber PJ (1970) Photochemical peactions of purple bacteria as revealed by studies of three spectrally different carotenobacteriochlorophill-ptotein complexes isolated from Chromatium, strain D. Biochem J 9:2688–2698

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was partially supported by the Grants of Russian Foundation for Basic Research 13-04-01184a, 12-04-00412a, and the Grant of the President of the Russian Federation HШ-307.2012.4. The authors are grateful to Professor Imhoff JF (Helmholtz Centre for Ocean Research, Germany) for the Ect. haloalkaliphila cells and Zhuravleva ZA for her help in growing bacteria and isolating the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Moskalenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashikhmin, A., Makhneva, Z. & Moskalenko, A. The LH2 complexes are assembled in the cells of purple sulfur bacterium Ectothiorhodospira haloalkaliphila with inhibition of carotenoid biosynthesis. Photosynth Res 119, 291–303 (2014). https://doi.org/10.1007/s11120-013-9947-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9947-6

Keywords

Navigation