Skip to main content
Log in

Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It had been commonly believed for a long time, that once established, degeneration of the central nervous system (CNS) is irreparable, and that adult person merely cannot restore dead or injured neurons. The existence of stem cells (SCs) in the mature brain, an organ with minimal regenerative ability, had been ignored for many years. Currently accepted that specific structures of the adult brain contain neural SCs (NSCs) that can self–renew and generate terminally differentiated brain cells, including neurons and glia. However, their contribution to the regulation of brain activity and brain regeneration in natural aging and pathology is still a subject of ongoing studies. Since the 1970s, when Fuad Lechin suggested the existence of repair mechanisms in the brain, new exhilarating data from scientists around the world have expanded our knowledge on the mechanisms implicated in the generation of various cell phenotypes supporting the brain, regulation of brain activity by these newly generated cells, and participation of SCs in brain homeostasis and regeneration. The prospects of the SC research are truthfully infinite and hitherto challenging to forecast. Once researchers resolve the issues regarding SC expansion and maintenance, the implementation of the SC–based platform could help to treat tissues and organs impaired or damaged in many devastating human diseases. Over the past 10 years, the number of studies on SCs has increased exponentially, and we have already become witnesses of crucial discoveries in SC biology. Comprehension of the mechanisms of neurogenesis regulation is essential for the development of new therapeutic approaches for currently incurable neurodegenerative diseases and neuroblastomas. In this review, we present the latest achievements in this fast–moving field and discuss essential aspects of NSC biology, including SC regulation by hormones, neurotransmitters, and transcription factors, along with the achievements of genetic and chemical reprogramming for the safe use of SCs in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

ALS:

amyotrophic lateral sclerosis

ANP:

amplifying neural progenitor

BMP:

bone morphogenetic protein

ESC:

embryonic stem cell

(f)NSC:

(fetal) neural stem cell

FTD:

frontotemporal dementia

GABA:

gamma–aminobutyric acid

GALA:

galantamine

GC:

glucocorticoid

GR:

glucocorticoid receptor

GCV:

ganciclovir

HD:

Huntington disease

hfPSC:

hair follicle–derived pluripotent stem cell

HSP70:

heat shock protein 70

iPSC:

induced pluripotent stem cell

MC:

mineralocorticoid

MR:

mineralocorticoid receptor

MEM:

NMDA receptor antagonist memantine

MS:

multiple sclerosis

MSC:

mesenchymal stem cell

NPC:

neural progenitor cell

NSC:

neural stem cell

PD:

Parkinson’s disease

QNP:

quiescent neu–ral progenitor

SC:

stem cell

SGZ:

subgranular zone

SVZ:

subventricular zone

YB–1:

Y–box binding protein 1

References

  1. Lee, S. B., Cho, K. S., Kim, J. Y., Yoo, D. S., Lee, T. G., and Huh, P. W. (2012) Hybrid surgery of multilevel cervical degenerative disc disease: review of literature and clinical results, J. Korean Neurosurg. Soc., 52, 452–458.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nishizawa, K. K., Mori, K., Saruhashi, Y., and Matsusue, Y. (2012) Operative outcomes for cervical degenerative disease: a review of the literature, ISRN Orthopedics, 2012, 165050; doi: 10.5402/2012/16505.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bandello, F., Sacconi, R., Querques, L., Corbelli, E., Cicinelli, M. V., and Querques, G. (2017) Recent advances in the management of dry age-related macular degeneration: a review, F1000Research, 6, 245; doi: 10.12688/f1000research.10664.1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Roghani, T., Zavieh, M. K., Manshadi, F. D., King, N., and Katzman, W. (2017) Age-related hyperkyphosis: update of its potential causes and clinical impacts–narrative review, Aging Clin. Exp. Res., 29, 567–577.

    Article  PubMed  Google Scholar 

  5. Tsujii, A., Nakamura, N., and Horibe, S. (2017) Age-related changes in the knee meniscus, Knee, 24, 1262–1270.

    Article  PubMed  Google Scholar 

  6. Hilgenberg-Sydney, P. B., Bonotto, D. V., Stechman-Neto, J., Zwir, L. F., Pacheco-Pereira, C., Canto, G. L., and Porporatti, A. L. (2018) Diagnostic validity of CT to assess degenerative temporomandibular joint disease: a systematic review, Dentomaxillofacial Radiol., 47, 20170389; doi: 10.1259/dmfr.20170389.

    Google Scholar 

  7. Tetreault, L., Lange, S. F., Chotai, S., Kryshtalskyj, M. T., Martin, A. R., Ahuja, C. S., Wilson, J. R., Davies, B. M., Nouri, A., Devin, C., and Fehlings, M. G. (2019) A systematic review of definitions for neurological complications and disease progression in patients treated surgically for degenerative cervical myelopathy, Spine (Phila Pa 1976), 44, 1318–1331; doi: 10.1097/BRS.0000000000003066.

    Article  Google Scholar 

  8. Sarkar, R. S., Philip, J., and Yadav, P. (2013) Transfusion medicine and solid organ transplant − update and review of some current issues, Med. J. Armed Forces India, 69, 162–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Malchesky, P. S. (2018) The International Federation for Artificial Organs review of the worldwide long term survival differences in hemodialysis, Artificial Organs, 42, 1111; doi: 10.1111/aor.13392.

    Article  PubMed  Google Scholar 

  10. Bourassa-Blanchette, S., Patel, V., Knoll, G. A., Hutton, B., Fergusson, N., Bennett, A., Tay, J., Cameron, D. W., and Cowan, J. (2019) Clinical outcomes of polyvalent immunoglobulin use in solid organ transplant recipients: a systematic review and meta-analysis. Part II: Non-kidney transplant, Clin. Transplant., 33, e13625.

    PubMed  Google Scholar 

  11. Shahabeddin Parizi, A., Krabbe, P. F. M., Buskens, E., Bakker, S. J. L., and Vermeulen, K. M. (2019) A scoping review of key health items in self-report instruments used among solid organ transplant recipients, Patient, 12, 171–181.

    Article  PubMed  Google Scholar 

  12. Nejadnik, H., Henning, T. D., Castaneda, R. T., Boddington, S., Taubert, S., Jha, P., Tavri, S., Golovko, D., Ackerman, L., Meier, R., and Daldrup-Link, H. E. (2012) Somatic differentiation and MR imaging of magnetically labeled human embryonic stem cells, Cell Transplant., 21, 2555–2567.

    Article  PubMed  Google Scholar 

  13. Hu, C., and Li, L. (2015) In vitro and in vivo hepatic differentiation of adult somatic stem cells and extraembryonic stem cells for treating end stage liver diseases, Stem Cells Intern., 2015, 871972; doi: 10.1155/2015/871972.

    Article  CAS  Google Scholar 

  14. New, S. E., Alvarez-Gonzalez, C., Vagaska, B., Gomez, S. G., Bulstrode, N. W., Madrigal, A., and Ferretti, P. (2015) A matter of identity − phenotype and differentiation potential of human somatic stem cells, Stem Cells Intern., 15, 1–13.

    CAS  Google Scholar 

  15. Barrilleaux, B., Phinney, D. G., Prockop, D. J., and O’Connor, K. C. (2006) Review: ex vivo engineering of living tissues with adult stem cells, Tissue Engineer., 12, 3007–3019.

    Article  CAS  Google Scholar 

  16. Gimble, J. M., Katz, A. J., and Bunnell, B. A. (2007) Adipose-derived stem cells for regenerative medicine, Circ. Res., 100, 1249–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharpless, N. E., and DePinho, R. A. (2007) How stem cells age and why this makes us grow old, Nat. Rev. Mol. Cell Biol., 8, 703–713.

    Article  CAS  PubMed  Google Scholar 

  18. Scaffidi, P., and Misteli, T. (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing, Nat. Cell Biol., 10, 452–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conboy, I. M., and Rando, T. A. (2012) Heterochronic parabiosis for the study of the effects of aging on stem cells and their niches, Cell Cycle, 11, 2260–2267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith, J. A., and Daniel, R. (2012) Stem cells and aging: a chicken-or-the-egg issue? Aging Dis., 3, 260–268.

    PubMed  PubMed Central  Google Scholar 

  21. Ji, J., Ho, B. S., Qian, G., Xie, X. M., Bigliardi, P. L., and Bigliardi-Qi, M. (2017) Aging in hair follicle stem cells and niche microenvironment, J. Dermatol., 44, 1097–1104.

    Article  PubMed  Google Scholar 

  22. Latchney, S. E., and Calvi, L. M. (2017) The aging hematopoietic stem cell niche: phenotypic and functional changes and mechanisms that contribute to hematopoietic aging, Seminars Hematol., 54, 25–32.

    Article  Google Scholar 

  23. Lukjanenko, L., Jung, M. J., Hegde, N., Perruisseau-Carrier, C., Migliavacca, E., Rozo, M., Karaz, S., Jacot, G., Schmidt, M., Li, L., Metairon, S., Raymond, F., Lee, U., Sizzano, F., Wilson, D. H., Dumont, N. A., Palini, A., Fassler, R., Steiner, P., Descombes, P., Rudnicki, M. A., Fan, C. M., von Maltzahn, J., Feige, J. N., and Bentzinger, C. F. (2016) Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice, Nat. Med., 22, 897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, J., Gong, T., Heng, B. C., and Zhang, C. F. (2017) A systematic review: differentiation of stem cells into functional pericytes, FASEB J., 31, 1775–1786.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, Y., He, J., Pei, X., and Zhao, W. (2013) Systematic review and meta-analysis of mesenchymal stem/stromal cells therapy for impaired renal function in small animal models, Nephrology (Carlton), 18, 201–208.

    Article  CAS  Google Scholar 

  26. Ye, J., and Yeghiazarians, Y. (2014) Cardiac stem cell therapy: review of the native cardiac progenitor cells and future direction, J. Cardiovasc. Pharmacol., 63, 85–94.

    Article  CAS  PubMed  Google Scholar 

  27. Mead, B., Logan, A., Berry, M., Leadbeater, W., and Scheven, B. A. (2017) Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair, Stem Cells, 35, 61–67.

    Article  CAS  PubMed  Google Scholar 

  28. Dailey, F. E., Turse, E. P., Naseer, M., Bragg, J. D., and Tahan, V. (2018) Review of stem cells as promising therapy for perianal disease in inflammatory bowel disease, World J. Transplant., 8, 97–101.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bianco, P., Cao, X., Frenette, P. S., Mao, J. J., Robey, P. G., Simmons, P. J., and Wang, C. Y. (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine, Nat. Med., 19, 35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Behfar, A., Crespo-Diaz, R., Terzic, A., and Gersh, B. J. (2014) Cell therapy for cardiac repair–lessons from clinical trials, Nat. Rev. Cardiol., 11, 232–246.

    Article  PubMed  Google Scholar 

  31. Dimmeler, S., Ding, S., Rando, T. A., and Trounson, A. (2014) Translational strategies and challenges in regenerative medicine, Nat. Med., 20, 814–821.

    Article  CAS  PubMed  Google Scholar 

  32. Weidt, C., Niggemann, B., Kasenda, B., Drell, T. L., Zanker, K. S., and Dittmar, T. (2007) Stem cell migration: a quintessential stepping stone to successful therapy, Curr. Stem Cell Res. Ther., 2, 89–103.

    Article  CAS  PubMed  Google Scholar 

  33. Lee, J. P., Jeyakumar, M., Gonzalez, R., Takahashi, H., Lee, P. J., Baek, R. C., Clark, D., Rose, H., Fu, G., Clarke, J., McKercher, S., Meerloo, J., Muller, F. J., Park, K. I., Butters, T. D., Dwek, R. A., Schwartz, P., Tong, G., Wenger, D., Lipton, S. A., Seyfried, T. N., Platt, F. M., and Snyder, E. Y. (2007) Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease, Nat. Med., 13, 439–447.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, H. M., Zhang, L. F., Ding, P. S., Liu, Y. J., Wu, X., and Zhou, J. N. (2014) Microglial activation mediates host neuronal survival induced by neural stem cells, J. Cell. Mol. Med., 18, 1300–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, L., Wong, S., Snyder, E. Y., Hamblin, M. H., and Lee, J. P. (2014) Human neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemicreperfusion cerebral injury, Stem Cell Res. Ther., 5, 129; doi: 10.1186/scrt519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Duncan, K., Gonzales-Portillo, G. S., Acosta, S. A., Kaneko, Y., Borlongan, C. V., and Tajiri, N. (2015) Stem cell-paved biobridges facilitate stem transplant and host brain cell interactions for stroke therapy, Brain Res., 1623, 160–165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sullivan, R., Duncan, K., Dailey, T., Kaneko, Y., Tajiri, N., and Borlongan, C. V. (2015) A possible new focus for stroke treatment − migrating stem cells, Exp. Opin. Biol. Ther., 15, 949–958.

    Article  CAS  Google Scholar 

  38. Lee, I. S., Jung, K., Kim, I. S., Lee, H., Kim, M., Yun, S., Hwang, K., Shin, J. E., and Park, K. I. (2015) Human neural stem cells alleviate Alzheimer-like pathology in a mouse model, Mol. Neurodegen., 10, 38; doi: 10.1186/s13024-015-0035-6.

    Article  CAS  Google Scholar 

  39. Poltavtseva, R. A., Nikonova, Y. A., Selezneva, I. I., Yaroslavtseva, A. K., Stepanenko, V. N., Esipov, R. S., Pavlovich, S. V., Klimantsev, I. V., Tyutyunnik, N. V., Grebennik, T. K., Nikolaeva, A. V., and Sukhikh, G. T. (2014) Mesenchymal stem cells from human dental pulp: isolation, characteristics, and potencies of targeted differentiation, Bull. Exp. Biol. Med., 158, 164–169.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., and Verfaillie, C. M. (2002) Pluripotency of mesenchymal stem cells derived from adult marrow, Nature, 418, 41–49.

    Article  CAS  PubMed  Google Scholar 

  41. Kwiatkowska, A., Nandhu, M. S., Behera, P., Chiocca, E. A., and Viapiano, M. S. (2013) Strategies in gene therapy for glioblastoma, Cancers, 5, 1271–1305.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Murphy, A. M., and Rabkin, S. D. (2013) Current status of gene therapy for brain tumors, translational research, J. Lab. Clin. Med., 161, 339–354.

    CAS  Google Scholar 

  43. Poltavtseva, R. A., Poltavtsev, A. V., Lutsenko, G. V., and Svirshchevskaya, E. V. (2019) Myths, reality and future of mesenchymal stem cell therapy, Cell Tissue Res., 375, 563–574.

    Article  CAS  PubMed  Google Scholar 

  44. Wu, D. C., Boyd, A. S., and Wood, K. J. (2007) Embryonic stem cell transplantation: potential applicability in cell replacement therapy and regenerative medicine, Front. Biosci., 12, 4525–4535.

    Article  CAS  PubMed  Google Scholar 

  45. Amoh, Y., and Hoffman, R. M. (2010) Isolation and culture of hair follicle pluripotent stem (hfPS) cells and their use for nerve and spinal cord regeneration, Methods Mol. Biol., 585, 401–420.

    Article  CAS  PubMed  Google Scholar 

  46. Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663–676.

    Article  CAS  PubMed  Google Scholar 

  47. Gurdon, J. B. (1962) The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles, J. Embryol. Exp. Morphol., 10, 622–640.

    CAS  PubMed  Google Scholar 

  48. Canfield, S. G., Stebbins, M. J., Faubion, M. G., Gastfriend, B. D., Palecek, S. P., and Shusta, E. V. (2019) An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons, Fluids Barriers CNS, 16, 25; doi: 10.1186/s12987-019-0145-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Miyoshi, K., Tsuji, D., Kudoh, K., Satomura, K., Muto, T., Itoh, K., and Noma, T. (2010) Generation of human induced pluripotent stem cells from oral mucosa, J. Biosci. Bioeng., 110, 345–350.

    Article  CAS  PubMed  Google Scholar 

  50. Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., Goshima, N., and Yamanaka, S. (2012) An efficient non-viral method to generate integration-free human iPS cells from cord blood and peripheral blood cells, Stem Cells, 31, 458–466.

    Article  CAS  Google Scholar 

  51. Yoshikawa, K., Naitoh, M., Kubota, H., Ishiko, T., Aya, R., Yamawaki, S., and Suzuki, S. (2013) Multipotent stem cells are effectively collected from adult human cheek skin, Biochem. Biophys. Res. Commun., 431, 104–110.

    Article  CAS  PubMed  Google Scholar 

  52. Zhou, T., Benda, C., Duzinger, S., Huang, Y., Li, X., Li, Y., Guo, X., Cao, G., Chen, S., Hao, L., Chan, Y. C., Ng, K. M., Ho, J. C., Wieser, M., Wu, J., Redl, H., Tse, H. F., Grillari, J., Grillari-Voglauer, R., Pei, D., and Esteban, M. A. (2011) Generation of induced pluripotent stem cells from urine, J. Am. Soc. Nephrol., 22, 1221–1228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Zhou, T., Benda, C., Dunzinger, S., Huang, Y., Ho, J. C., Yang, J., Wang, Y., Zhang, Y., Zhuang, Q., Li, Y., Bao, X., Tse, H. F., Grillari, J., Grillari-Voglauer, R., Pei, D., and Esteban, M. A. (2012) Generation of human induced pluripotent stem cells from urine samples, Nat. Protocols, 7, 2080–2089.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, L., Wang, L., Huang, W., Su, H., Xue, Y., Su, Z., Liao, B., Wang, H., Bao, X., Qin, D., He, J., Wu, W., So, K. F., Pan, G., and Pei, D. (2013) Generation of integration-free neural progenitor cells from cells in human urine, Nat. Methods, 10, 84–89.

    Article  CAS  PubMed  Google Scholar 

  55. Braganca, J., Lopes, J. A., Mendes-Silva, L., and Almeida Santos, J. M. (2019) Induced pluripotent stem cells, a giant leap for mankind therapeutic applications, World J. Stem Cells, 11, 421–430.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lim, M. L., Jungebluth, P., Ajalloueian, F., Friedrich, L. H., Gilevich, I., Grinnemo, K. H., Gubareva, E., Haag, J. C., Lemon, G., Sjoqvist, S., Caplan, A. L., and Macchiarini, P. (2013) Whole organ and tissue reconstruction in thoracic regenerative surgery, Mayo Clin. Proc., 88, 1151–1166.

    Article  PubMed  Google Scholar 

  57. Kokoris, M. S., and Black, M. E. (2002) Characterization of herpes simplex virus type 1 thymidine kinase mutants engineered for improved ganciclovir or acyclovir activity, Protein Sci. A Publ. Protein Soc., 11, 2267–2272.

    Article  CAS  Google Scholar 

  58. Zhou, H., Wu, S., Joo, J. Y., Zhu, S., Han, D. W., Lin, T., Trauger, S., Bien, G., Yao, S., Zhu, Y., Siuzdak, G., Scholer, H. R., Duan, L., and Ding, S. (2009) Generation of induced pluripotent stem cells using recombinant proteins, Stem Cells, 4, 381–384.

    CAS  Google Scholar 

  59. Kim, D., Kim, C. H., Moon, J. I., Chung, Y. G., Chang, M. Y., Han, B. S., Ko, S., Yang, E., Cha, K. Y., Lanza, R., and Kim, K. S. (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins, Stem Cells, 4, 472–476.

    CAS  Google Scholar 

  60. Warren, L., Manos, P. D., Ahfeldt, T., Loh, Y.-H., Li, H., Lau, F., Ebina, W., Mandal, P., Smith, Z. D., Meissner, A., Daley, G. Q., Brack, A. S., Collins, J. J., Cowan, C., Schlaeger, T. M., and Rossi, D. J. (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA, Cell Stem Cell, 7, 618–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., and Hasegawa, M. (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome, Proc. Japan Acad., 85, 348–362.

    Article  CAS  Google Scholar 

  62. Yamanaka, K., Nakagawa, M., Hyenjong, H., Ichisaka, T., and Yamanaka, S. (2008) Generation of mouse induced pluripotent stem cells without viral vectors, Science, 322, 949–953.

    Article  PubMed  CAS  Google Scholar 

  63. Chen, I. P., Fukuda, K., Fusaki, N., Iida, A., Hasegawa, M., Lichtler, A., and Reichenberger, E. J. (2013) Induced pluripotent stem cell reprogramming by integration-free Sendai virus vectors from peripheral blood of patients with craniometaphyseal dysplasia, Cell. Reprogram., 15, 503–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ye, L., Muench, M. O., Fusaki, N., Beyer, A. I., Wang, J., Qi, Z., Yu, J., and Kan, Y. W. (2013) Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors, Stem Cells Transl. Med., 2, 558–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Altman, J. (1962) Autoradiographic study of degenerative and regenerative proliferation of neuroglia cells with tritiated thymidine, Exp. Neurol., 5, 302–318.

    Article  CAS  PubMed  Google Scholar 

  66. Altman, J. (1962) Are new neurons formed in the brains of adult mammals? Science, 135, 1127–1128.

    Article  CAS  PubMed  Google Scholar 

  67. Altman, J., and Das, G. D. (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats, J. Comp. Neurol., 124, 319–335.

    Article  CAS  PubMed  Google Scholar 

  68. Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A.-M., Nordborg, C., Peterson, D. A., and Gage, F. H. (1998) Neurogenesis in the adult human hippocampus, Nat. Med., 4, 1313–1317.

    Article  CAS  PubMed  Google Scholar 

  69. Reynolds, B. A., and Weiss, S. (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system, Science, 255, 1707–1710.

    Article  CAS  PubMed  Google Scholar 

  70. Morshead, C. M., Reynolds, B. A., Craig, C. G., McBurney, M. W., Staines, W. A., Morassutti, D., Weiss, S., and van der Kooy, D. (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells, Neuron, 13, 1071–1082.

    Article  CAS  PubMed  Google Scholar 

  71. McKay, R. (1997) Stem cells in the central nervous system, Science, 276, 66–71.

    Article  CAS  PubMed  Google Scholar 

  72. Shihabuddin, L. S., Palmer, T. D., and Gage, F. H. (1999) The search for neural progenitor cells: prospects for the therapy of neurodegenerative disease, Mol. Med. Today, 5, 474–480.

    Article  CAS  PubMed  Google Scholar 

  73. Shimada, I. S., and Spees, J. L. (2011) Stem and progenitor cells for neurological repair: minor issues, major hur-dles, and exciting opportunities for paracrine-based therapeutics, J. Cell. Biochem., 112, 374–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Temple, S. (2001) The development of neural stem cells, Nature, 414, 112–117.

    Article  CAS  PubMed  Google Scholar 

  75. Lovell-Badge, R. (2001) The future for stem cell research, Nature, 414, 88–91.

    Article  CAS  PubMed  Google Scholar 

  76. Das, G., Gupta, V., and Ghosh, S. (2019) Glial–neuron transformation by “chemical cocktail”, ACS Chem. Neurosci., 10, 42–43.

    Article  CAS  PubMed  Google Scholar 

  77. Aleksandrova, M. A., Poltavtseva, R. A., Marei, M. V., and Sukhikh, G. T. (2016) Analysis of neural stem cells from human cortical brain structures in vitro, Bull. Exp. Biol. Med., 161, 197–208.

    Article  CAS  PubMed  Google Scholar 

  78. Toda, T., and Gage, F. H. (2018) Review: adult neurogenesis contributes to hippocampal plasticity, Cell Tissue Res., 373, 693–709.

    Article  PubMed  Google Scholar 

  79. Gage, F. H. (2000) Mammalian neural stem cells, Science, 287, 1433–1438.

    Article  CAS  PubMed  Google Scholar 

  80. Gage, F. H. (2002) Neurogenesis in the adult brain, J. Neurosci., 22, 612–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Emsley, J. G., Mitchell, B. D., Kempermann, G., and Macklis, J. D. (2005) Adult neurogenesis and repair of the adult CNS with neural progenitors, precursors, and stem cells, Progr. Neurobiol., 75, 321–341.

    Article  CAS  Google Scholar 

  82. Suh, H., Deng, W., and Gage, F. H. (2009) Signaling in adult neurogenesis, Ann. Rev. Cell Develop. Biol., 25, 253–275.

    Article  CAS  Google Scholar 

  83. Alvarez-Buylla, A., Garcia-Verdugo, J. M., and Tramontin, A. D. (2001) A unified hypothesis on the lineage of neural stem cells, Nat. Rev. Neurosci., 2, 287–293.

    Article  CAS  PubMed  Google Scholar 

  84. Cameron, H. A., and McKay, R. D. (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus, J. Comp. Neurol., 435, 406–417.

    Article  CAS  PubMed  Google Scholar 

  85. Androutsellis-Theotokis, A., Rueger, M. A., Park, D. M., Mkhikian, H., Korb, E., Poser, S. W., Walbridge, S., Munasinghe, J., Koretsky, A. P., Lonser, R. R., and McKay, R. D. (2009) Targeting neural precursors in the adult brain rescues injured dopamine neurons, Proc. Natl. Acad. Sci. USA, 106, 13570–13575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Androutsellis-Theotokis, A., Rubin de Celis, M. F., Ehrhart-Bornstein, M., and Bornstein, S. R. (2012) Common features between chromaffin and neural progenitor cells, Mol. Psychiatry, 17, 351; doi: 10.1038/mp.2012.18.

    Article  CAS  PubMed  Google Scholar 

  87. Bornstein, S. R., Ehrhart-Bornstein, M., Androutsellis-Theotokis, A., Eisenhofer, G., Vukicevic, V., Licinio, J., Wong, M. L., Calissano, P., Nistico, G., Preziosi, P., and Levi-Montalcini, R. (2012) Chromaffin cells: the peripheral brain, Mol. Psychiatry, 17, 354–358.

    Article  CAS  PubMed  Google Scholar 

  88. Encinas, J. M., Michurina, T. V., Peunova, N., Park, J.-H., Tordo, J., Peterson, D. A., and Enikolopov, G. (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus, Cell Stem Cell, 8, 566–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Encinas, J. M., and Sierra, A. (2012) Neural stem cell deforestation as the main force driving the age-related decline in adult hippocampal neurogenesis, Behav. Brain Res., 14, 433–439.

    Article  Google Scholar 

  90. Deng, W., Aimone, J. B., and Gage, F. H. (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci., 11, 339–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Petreanu, L., and Alvarez-Buylla, A. (2002) Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction, J. Neurosci., 22, 6106–6113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bobkova, N. V., Poltavtseva, R. A., Samokhin, A. N., and Sukhikh, G. T. (2013) Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration, Bull. Exp. Biol. Med., 156, 119–121.

    Article  CAS  PubMed  Google Scholar 

  93. Bobkova, N. V., Lyabin, D. N., Medvinskaya, N. I., Samokhin, A. N., Nekrasov, P. V., Nesterova, I. V., Aleksandrova, I. Y., Tatarnikova, O. G., Bobylev, A. G., Vikhlyantsev, I. M., Kukharsky, M. S., Ustyugov, A. A., Polyakov, D. N., Eliseeva, I. A., Kretov, D. A., Guryanov, S. G., and Ovchinnikov, L. P. (2015) The Y-box binding protein 1 suppresses Alzheimer’s disease progression in two animal models, PLoS One, 10, e0138867; doi: 10.1371/journal.pone.0138867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ueno, M., Akiguchi, I., Hosokawa, M., Shinnou, M., Sakamoto, H., Takemura, M., and Higuchi, K. (1997) Age-related changes in barrier function in mouse brain. II. Accumulation of serum albumin in the olfactory bulb of SAM mice increased with aging, Arch. Gerontol. Geriatr., 25, 321–331.

    Article  CAS  PubMed  Google Scholar 

  95. Nakayasu, C., Kanemura, F., Hirano, Y., Shimizu, Y., and Tonosaki, K. (2000) Sensitivity of the olfactory sense declines with the aging in senescence-accelerated mouse (SAM-P1), Physiol. Behav., 70, 135–139.

    Article  CAS  PubMed  Google Scholar 

  96. Nicolazzo, J. A., and Mehta, D. C. (2010) Transport of drugs across the blood-brain barrier in Alzheimer’s disease, Ther. Deliv., 1, 595–611.

    Article  CAS  PubMed  Google Scholar 

  97. Arshavsky, Y. I. (2014) Alzheimer disease and cellular mechanisms of memory storage, J. Neuropathol. Exp. Neurol., 73, 192–205.

    Article  CAS  PubMed  Google Scholar 

  98. Sahay, A., Scobie, K. N., Hill, A. S., O’Carroll, C. M., Kheirbek, M. A., Burghardt, N. S., Fenton, A. A., Dranovsky, A., and Hen, R. (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation, Nature, 472, 466–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Oomen, C. A., Bekinschtein, P., Kent, B. A., Saksida, L. M., and Bussey, T. J. (2014) Adult hippocampal neurogenesis and its role in cognition, Wiley Interdisciplin. Rev. Cognit. Sci., 5, 573–587.

    Article  Google Scholar 

  100. Leutgeb, J. K., Leutgeb, S., Moser, M. B., and Moser, E. I. (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus, Science, 315, 961–966.

    Article  CAS  PubMed  Google Scholar 

  101. Clelland, C. D., Choi, M., Romberg, C., Clemenson, G. D., Jr., Fragniere, A., Tyers, P., Jessberger, S., Saksida, L. M., Barker, R. A., Gage, F. H., and Bussey, T. J. (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation, Science, 325, 210–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Deng, W., Saxe, M. D., Gallina, I. S., and Gage, F. H. (2009) Adult-born hippocampal dentate granule cells undergoing maturation modulate learning and memory in the brain, J. Neurosci., 29, 13532–13542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Scobie, K. N., Hall, B. J., Wilke, S. A., Klemenhagen, K. C., Fujii-Kuriyama, Y., Ghosh, A., Hen, R., and Sahay, A. (2009) Kruppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis, J. Neurosci., 29, 9875–9887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tronel, S., Belnoue, L., Grosjean, N., Revest, J. M., Piazza, P. V., Koehl, M., and Abrous, D. N. (2012) Adultborn neurons are necessary for extended contextual discrimination, Hippocampus, 22, 292–298.

    Article  PubMed  Google Scholar 

  105. Groves, J. O., Leslie, I., Huang, G.-J., McHugh, S. B., Taylor, A., Mott, R., Munafo, M., Bannerman, D. M., and Flint, J. (2013) Ablating adult neurogenesis in the rat has no effect on spatial processing: evidence from a novel pharmacogenetic model, PLoS Genet., 9, e1003718; doi: 10.1371/journal.pgen.1003718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Creer, D. J., Romberg, C., Saksida, L. M., van Praag, H., and Bussey, T. J. (2010) Running enhances spatial pattern separation in mice, Proc. Natl. Acad. Sci. USA, 107, 2367–2372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yeung, S. T., Myczek, K., Kang, A. P., Chabrier, M. A., Baglietto-Vargas, D., and LaFerla, F. M. (2014) Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain, Neuroscience, 259, 214–222.

    Article  CAS  PubMed  Google Scholar 

  108. Castello, N. A., Nguyen, M. H., Tran, J. D., Cheng, D., Green, K. N., and LaFerla, F. M. (2014) 7,8-dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss, PLoS One, 9, e91453; doi: 10.1371/journal.pone.0091453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Devi, L., and Ohno, M. (2015) TrkB reduction exacerbates Alzheimer’s disease-like signaling aberrations and memory deficits without affecting β-amyloidosis in 5XFAD mice, Transl. Psychiatry, 5, e562; doi: 10.1038/ tp.2015.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rice, R. A., Spangenberg, E. E., Yamate-Morgan, H., Lee, R. J., Arora, R. P., Hernandez, M. X., Tenner, A. J., West, B. L., and Green, K. N. (2015) Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus, J. Neurosci., 35, 9977–9989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dagher, N. N., Najafi, A. R., Kayala, K. M. N., Elmore, M. R. P., White, T. E., Medeiros, R., West, B. L., and Green, K. N. (2015) Colony-stimulating factor 1 receptor inhibition prevents microglial plaque association and improves cognition in 3xTg-AD mice, J. Neuroinflam., 12, 139; doi: 10.1186/s12974-015-0366-9.

    Article  CAS  Google Scholar 

  112. Revest, J. M., Dupret, D., Koehl, M., Funk-Reiter, C., Grosjean, N., Piazza, P. V., and Abrous, D. N. (2009) Adult hippocampal neurogenesis is involved in anxietyrelated behaviors, Mol. Psychiatry, 14, 959–967.

    Article  PubMed  Google Scholar 

  113. Fuss, J., Ben Abdallah, N. M., Vogt, M. A., Touma, C., Pacifici, P. G., Palme, R., Witzemann, V., Hellweg, R., and Gass, P. (2009) Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis, Hippocampus, 20, 364–376.

    Google Scholar 

  114. Snyder, J. S., Soumier, A., Brewer, M., Pickel, J., and Cameron, H. A. (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behavior, Nature, 476, 458–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., Weisstaub, N., Lee, J., Duman, R., Arancio, O., Belzung, C., and Hen, R. (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants, Science, 301, 805–809.

    Article  CAS  PubMed  Google Scholar 

  116. Saxe, M. D., Battaglia, F., Wang, J. W., Malleret, G., David, D. J., Monckton, J. E., Garcia, A. D., Sofroniew, M. V., Kandel, E. R., Santarelli, L., Hen, R., and Drew, M. R. (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus, Proc. Natl. Acad. Sci. USA, 103, 17501–17506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Holick, K. A., Lee, D. C., Hen, R., and Dulawa, S. C. (2008) Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor, Neuropsychopharmacology, 33, 406–417.

    Article  CAS  PubMed  Google Scholar 

  118. Bessa, J. M., Ferreira, D., Melo, I., Marques, F., Cerqueira, J. J., Palha, J. A., Almeida, O. F., and Sousa, N. (2009) The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling, Mol. Psychiatry, 14, 764–773.

    Article  CAS  PubMed  Google Scholar 

  119. Winocur, G., Wojtowicz, J. M., Sekeres, M., Snyder, J. S., and Wang, S. (2006) Inhibition of neurogenesis interferes with hippocampus-dependent memory function, Hippocampus, 16, 296–304.

    Article  PubMed  Google Scholar 

  120. Zhang, C.-L., Zou, Y., He, W., Gage, F. H., and Evans, R. M. (2008) A role for adult TLX-positive neural stem cells in learning and behaviour, Nature, 451, 1004–1007.

    Article  CAS  PubMed  Google Scholar 

  121. Wojtowicz, J. M., Askew, M. L., and Winocur, G. (2008) The effects of running and of inhibiting adult neurogenesis on learning and memory in rats, Eur. J. Neurosci., 27, 1494–1502.

    Article  PubMed  Google Scholar 

  122. Hernandez-Rabaza, V., Llorens-Martin, M., Velazquez-Sanche, C., Ferragud, A., Arcusa, A., Gumus, H. G., Gomez-Pinedo, U., Perez-Villalba, A., Rosello, J., Trejo, J. L., Barcia, J. A., and Canales, J. J. (2009) Inhibition of adult hippocampal neurogenesis disrupts contextual learning but spares spatial working memory, long-term conditional rule retention and spatial reversal, Neuroscience, 159, 59–68.

    Article  CAS  PubMed  Google Scholar 

  123. Ko, H. G., Jang, D. J., Son, J., Kwak, C., Choi, J. H., Ji, Y. H., Lee, Y. S., Son, H., and Kaang, B. K. (2009) Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory, Mol. Brain, 2, 1; doi: 10.1186/1756-6606-2-1.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Seo, D. O., Carillo, M. A., Chih-Hsiung Lim, S., Tanaka, K. F., and Drew, M. R. (2015) Adult hippocampal neurogenesis modulates fear learning through associative and non-associative mechanisms, J. Neurosci., 35, 11330–11345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Pauli, E., Hildebrandt, M., Romstock, J., Stefan, H., and Blumcke, I. (2006) Deficient memory acquisition in temporal lobe epilepsy is predicted by hippocampal granule cell loss, Neurology, 67, 1383–1389.

    Article  CAS  PubMed  Google Scholar 

  126. Coras, R., Siebzehnrubl, F. A., Pauli, E., Huttner, H. B., Njunting, M., Kobow, K., Villmann, C., Hahnen, E., Neuhuber, W., Weigel, D., Buchfelder, M., Stefan, H., Beck, H., Steindler, D. A., and Blumcke, I. (2010) Low proliferation and differentiation capacities of adult hippocampal stem cells correlate with memory dysfunction in humans, Brain, 133, 3359–3372.

    Article  PubMed  Google Scholar 

  127. Coras, R., Pauli, E., Li, J., Schwarz, M., Rossler, K., Buchfelder, M., Hamer, H., Stefan, H., and Blumcke, I. (2014) Differential influence of hippocampal subfields to memory formation: insights from patients with temporal lobe epilepsy, Brain, 137, 1945–1957.

    Article  PubMed  Google Scholar 

  128. Witt, J. A., Coras, R., Schramm, J., Becker, A. J., Elger, C. E., Blumcke, I., and Helmstaedter, C. (2014) The overall pathological status of the left hippocampus determines preoperative verbal memory performance in left mesial temporal lobe epilepsy, Hippocampus, 24, 446–454.

    Article  PubMed  Google Scholar 

  129. Rangel, L. M., Alexander, A. S., Aimone, J. B., Wiles, J., Gage, F. H., Chiba, A. A., and Quinn, L. K. (2014) Temporally selective contextual encoding in the dentate gyrus of the hippocampus, Nat. Commun., 5, 3181; doi: 10.1038/ncomms4181.

    Article  CAS  PubMed  Google Scholar 

  130. Eichenbaum, H. (2014) Time cells in the hippocampus: a new dimension for mapping memories, Nat. Rev. Neurosci., 15, 732–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Song, J., Zhong, C., Bonaguidi, M. A., Sun, G. J., Hsu, D., Gu, Y., Meletis, K., Huang, Z. J., Ge, S., Enikolopov, G., Deisseroth, K., Luscher, B., Christian, K. M., Ming, G. L., and Song, H. (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision, Nature, 489, 150–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rinaldi, L., and Benitah, S. A. (2015) Epigenetic regulation of adult stem cell function, FEBS J., 282, 1589–1604.

    Article  CAS  PubMed  Google Scholar 

  133. Yao, B., Christian, K. M., He, C., Jin, P., Ming, G. L., and Song, H. (2016) Epigenetic mechanisms in neurogenesis, Nat. Rev. Neurosci., 17, 537–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Pan, Y.-W., Storm, D. R., and Xia, Z. (2013) Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 map kinase, Neurobiol. Learn. Memory, 105, 81–92.

    Article  CAS  Google Scholar 

  135. Wang, X.-Q., Xia, C.-L., Chen, S.-B., Tan, J. H., Ou, T. M., Huang, S. L., Li, D., Gu, L.-Q., and Huang, Z.-S. (2015) Design, synthesis, and biological evaluation of 2-arylethenylquinoline derivatives as multifunctional agents for the treatment of Alzheimer’s disease, Eur. J. Med. Chem., 89, 349–361.

    Article  CAS  PubMed  Google Scholar 

  136. Faigle, R., and Song, H. (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis, Biochim. Biophys. Acta, 1830, 2435–2448.

    Article  CAS  PubMed  Google Scholar 

  137. Bengoa-Vergniory, N., and Kypta, R. M. (2015) Canonical and noncanonical Wnt signaling in neural stem/progenitor cells, Cell. Mol. Life Sci., 72, 4157–4172.

    Article  CAS  PubMed  Google Scholar 

  138. Chen, M., Tian, S., Yang, X., Lane, A. P., Reed, R. R., and Liu, H. (2014) Wnt-responsive Lgr5+ globose basal cells function as multipotent olfactory epithelium progenitor cells, J. Neurosci., 34, 8268–8276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Bengoa-Vergniory, N., Gorrono-Etxebarria, I., Gonzalez-Salazar, I., and Kypta, R. M. (2014) A switch from canonical to noncanonical Wnt signaling mediates early differentiation of human neural stem cells, Stem Cells, 32, 3196–3208.

    Article  CAS  PubMed  Google Scholar 

  140. Ortega-Martinez, S. (2015) A new perspective on the role of the CREB family of transcription factors in memory consolidation via adult hippocampal neurogenesis, Front. Mol. Neurosci., 8, 46; doi: 10.3389/fnmol.2015.00046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Mira, H., Andreu, Z., Suh, H., Lie, D. C., Jessberger, S., Consiglio, A., San Emeterio, J., Hortiguela, R., Marques-Torrejon, M. A., Nakashima, K., Colak, D., Gotz, M., Farinas, I., and Gage, F. H. (2010) Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus, Cell Stem Cell, 7, 78–89.

    Article  CAS  PubMed  Google Scholar 

  142. Bond, A. M., Peng, C. Y., Meyers, E. A., Mcguire, T., Ewaleifoh, O., and Kessler, J. A. (2014) BMP signaling regulates the tempo of adult hippocampal progenitor maturation at multiple stages of the lineage, Stem Cells, 32, 2201–2214.

    Article  CAS  PubMed  Google Scholar 

  143. Furuta, Y., Piston, D. W., and Hogan, B. L. (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development, Development, 124, 2203–2212.

    CAS  PubMed  Google Scholar 

  144. Hebert, J. M., Mishina, Y., and Mcconnell, S. K. (2002) BMP signaling is required locally to pattern the dorsal telencephalic midline, Neuron, 35, 1029–1041.

    Article  CAS  PubMed  Google Scholar 

  145. Altuna, M., Urdanoz-Casado, A., Sanchez-Ruiz de Gordoa, J., Zelaya, M. V., Labarga, A., Lepesant, J. M. J., Roldan, M., Blanco-Luquin, I., Perdones, A., Larumbe, R., Jerico, I., Echavarri, C., Mendez-Lopez, I., Di Stefano, L., and Mendioroz, M. (2019) DNA methylation signature of human hippocampus in Alzheimer’s disease is linked to neurogenesis, Clin. Epigen., 11, 91; doi: 10.1186/s13148-019-0672-7.

    Article  CAS  Google Scholar 

  146. Kumar, A., and Thakur, M. K. (2015) Epigenetic regulation of presenilin 1 and 2 in the cerebral cortex of mice during development, Dev. Neurobiol., 75, 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  147. Li, G., Bien-Ly, N., Andrews-Zwilling, Y., Xu, Q., Bernardo, A., Ring, K., Halabisky, B., Deng, C., Mahley, R. W., and Huang, Y. (2009) GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knock-in mice, Cell Stem Cell, 5, 634–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Akbarian, S. (2014) Epigenetic mechanisms in schizophrenia, Dialog. Clin. Neurosci., 16, 405–417.

    Google Scholar 

  149. Li, X., and Jin, P. (2010) Roles of small regulatory RNAs in determining neuronal identity, Nat. Rev. Neurosci., 11, 329–338.

    Article  CAS  PubMed  Google Scholar 

  150. Clark, B. S., and Blackshaw, S. (2014) Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease, Front. Genet., 5, 164; doi: 10.3389/fgene.2014.00164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Gonzales-Roybal, G., and Lim, D. A. (2013) Chromatin-based epigenetics of adult subventricular zone neural stem cells, Front. Genet., 4, 194; doi: 10.3389/fgene.2013.00194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Dieni, C. V., Chancey, J. H., and Overstreet-Wadiche, L. S. (2013) Dynamic functions of GABA signaling during granule cell maturation, Front. Neural Circ., 6, 113; doi: 10.3389/fncir.2012.00113.

    Google Scholar 

  153. Crowther, A. J., and Song, J. (2014) Activity-dependent signaling mechanisms regulating adult hippocampal neural stem cells and their progeny, Neurosci. Bull., 30, 542–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ge, S., Pradhan, D. A., Ming, G. L., and Song, H. (2007) GABA sets the tempo for activity-dependent adult neurogenesis, Trends Neurosci., 30, 1–8.

    Article  PubMed  CAS  Google Scholar 

  155. Ge, S., Goh, E. L. K., Sailor, K. A., Kitabatake, Y., Ming, G., and Song, H. (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain, Nature, 439, 589–593.

    Article  CAS  PubMed  Google Scholar 

  156. Platel, J.-C., Dave, K. A., and Bordey, A. (2008) Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain, J. Physiol., 586, 3739–3743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bhattacharyya, B. J., Banisadr, G., Jung, H., Ren, D., Cronshaw, D. G., Zou, Y., and Miller, R. J. (2008) The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus, J. Neurosci., 28, 6720–6730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kolodziej, A., Schulz, S., Guyon, A., Wu, D. F., Pfeiffer, M., Odemis, V., Hollt, V., and Stumm, R. (2008) Tonic activation of CXC chemokine receptor 4 in immature granule cells supports neurogenesis in the adult dentate gyrus, J. Neurosci., 28, 4488–4500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Masiulis, I., Yun, S., and Eisch, A. J. (2011) The interesting interplay between interneurons and adult hippocampal neurogenesis, Mol. Neurobiol., 44, 287–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pallotto, M., and Deprez, F. (2014) Regulation of adult neurogenesis by GABAergic transmission: signaling beyond GABAA-receptors, Front. Cell. Neurosci., 8, 166; doi: 10.3389/fncel.2014.00166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Song, J., Christian, K., Ming, G., and Song, H. (2012) Modification of hippocampal circuitry by adult neurogenesis, Dev. Neurobiol., 72, 1032–1043.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sun, Y., Dong, Z., Jin, T., Ang, K.-H., Huang, M., Haston, K. M., Peng, J., Zhong, T. P., Finkbeiner, S., Weiss, W. A., Arkin, M. R., Jan, L. Y., and Guo, S. (2013) Imaging-based chemical screening reveals activity-dependent neural differentiation of pluripotent stem cells, eLife, 2, e00508; doi: 10.7554/eLife.00508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Cooper-Kuhn, C. M., Winkler, J., and Kuhn, H. G. (2004) Decreased neurogenesis after cholinergic forebrain lesion in the adult rat, J. Neurosci. Res., 77, 155–165.

    Article  CAS  PubMed  Google Scholar 

  164. Jeong, D. U., Lee, J. E., Lee, S. E., Chang, W. S., Kim, S. J., and Chang, J. W. (2014) Improvements in memory after medial septum stimulation are associated with changes in hippocampal cholinergic activity and neurogenesis, BioMed Res. Int., 2014, 568587; doi: 10.1155/2014/ 568587.

    PubMed  PubMed Central  Google Scholar 

  165. Itou, Y., Nochi, R., Kuribayashi, H., Saito, Y., and Hisatsune, T. (2011) Cholinergic activation of hippocampal neural stem cells in aged dentate gyrus, Hippocampus, 21, 446–459.

    Article  CAS  PubMed  Google Scholar 

  166. Yoo, D. Y., Woo, Y. J., Kim, W., Nam, S. M., Lee, B. H., Yeun, G. H., Yoon, Y. S., and Hwang, I. K. (2011) Effects of a new synthetic butyryl cholinesterase inhibitor, HBU-39, on cell proliferation and neuroblast differentiation in the hippocampal dentate gyrus in a scopolamine-induced amnesia animal model, Neurochem. Int., 59, 722–728.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang, X., Gong, Q., Zhang, S., Wang, L., Hu, Y., Shen, H., and Dong, S. (2012) 3-[3-(3-florophenyl-2-propyn-1-ylthio)-1,2,5-thiadiazol-4-yl]-1,2,5,6-tetrahydro-1-methylpyridine oxalate, a novel xanomeline derivative, improves neural cells proliferation and survival in adult mice, Neural Regen. Res., 7, 24–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Paez-Gonzalez, P., Asrican, B., Rodriguez, E., and Kuo, C. T. (2014) Identification of distinct ChAT+ neurons and activity-dependent control of postnatal SVZ neurogenesis, Nat. Neurosci., 17, 934–942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Jin, K., Xie, L., Mao, X. O., and Greenberg, D. A. (2006) Alzheimer’s disease drugs promote neurogenesis, Brain Res., 1085, 183–188.

    Article  CAS  PubMed  Google Scholar 

  170. Kishi, T., Matsunaga, S., and Iwata, N. (2017) The effects of memantine on behavioral disturbances in patients with Alzheimer’s disease: a meta-analysis, Neuropsychiatr. Dis. Treat., 13, 1909-1928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Pickering, G., and Morel, V. (2018) Memantine for the treatment of general neuropathic pain: a narrative review, Fundam. Clin. Pharmacol., 32, 4–13.

    Article  CAS  PubMed  Google Scholar 

  172. Grossberg, G. T., Edwards, K. R., and Zhao, Q. (2006) Rationale for combination therapy with galantamine and memantine in Alzheimer’s disease, J. Clin. Pharmacol., 46, 17S–26S.

    Article  CAS  PubMed  Google Scholar 

  173. Busquet, P., Capurro, V., Cavalli, A., Piomelli, D., Reggiani, A., and Bertorelli, R. (2012) Synergistic effects of galantamine and memantine in attenuating scopolamine-induced amnesia in mice, J. Pharmacol. Sci., 120, 305–309.

    Article  CAS  PubMed  Google Scholar 

  174. Rosini, M., Simoni, E., Minarini, A., and Melchiorre, C. (2014) Multi-target design strategies in the context of Alzheimer’s disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces, Neurochem. Res., 39, 1914–1923.

    Article  CAS  PubMed  Google Scholar 

  175. Kita, Y., Ago, Y., Takano, E., Fukada, A., Takuma, K., and Matsuda, T. (2013) Galantamine increases hippocampal insulin-like growth factor 2 expression via α7 nicotinic acetylcholine receptors in mice, Psychopharmacology, 225, 543–551.

    Article  CAS  PubMed  Google Scholar 

  176. Kita, Y., Ago, Y., Higashino, K., Asada, K., Takano, E., Takuma, K., and Matsuda, T. (2014) Galantamine promotes adult hippocampal neurogenesis via M1 muscarinic and α7 nicotinic receptors in mice, Int. J. Neuropsychopharmacol., 17, 1957–1968.

    Article  CAS  PubMed  Google Scholar 

  177. Ishikawa, R., Kim, R., Namba, T., Kohsaka, S., Uchino, S., and Kida, S. (2014) Time-dependent enhancement of hippocampus-dependent memory after treatment with memantine: implications for enhanced hippocampal adult neurogenesis, Hippocampus, 24, 784–793.

    Article  CAS  PubMed  Google Scholar 

  178. Sun, D., Chen, J., Bao, X., Cai, Y., Zhao, J., Huang, J., Huang, W., Fan, X., and Xu, H. (2015) Protection of radial glial-like cells in the hippocampus of APP/PS1 mice: a novel mechanism of memantine in the treatment of Alzheimer’s disease, Mol. Neurobiol., 52, 464–477.

    Article  CAS  PubMed  Google Scholar 

  179. Peters, O., Lorenz, D., Fesche, A., Schmidtke, K., Hull, M., Perneczky, R., Ruther, E., Moller, H. J., Jessen, F., Maier, W., Kornhuber, J., Jahn, H., Luckhaus, C., Gertz, H. J., Schroder, J., Pantel, J., Teipel, S., Wellek, S., Frolich, L., and Heuser, I. (2012) Combination of galantamine and memantine modifies cognitive function in subjects with amnestic MCI, J. Nutr. Health Aging, 16, 544–548.

    Article  CAS  PubMed  Google Scholar 

  180. Tricco, A. C., Soobiah, C., Berliner, S., Ho, J. M., Ng, C. H., Ashoor, H. M., Chen, M. H., Hemmelgarn, B., and Straus, S. E. (2013) Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis, CMAJ: Canadian Med. Assoc. J., 185, 1393–1401.

    Article  Google Scholar 

  181. Schneider, J. S., Pioli, E. Y., Jianzhong, Y., Li, Q., and Bezard, E. (2013) Effects of memantine and galantamine on cognitive performance in aged rhesus macaques, Neurobiol. Aging, 34, 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  182. Vega, J. N., and Newhouse, P. A. (2014) Mild cognitive impairment: diagnosis, longitudinal course, and emerging treatments, Curr. Psych. Rep., 16, 490–508.

    Article  Google Scholar 

  183. Koola, M. M., Buchanan, R. W., Pillai, A., Aitchison, K. J., Weinberger, D. R., Aaronson, S. T., and Dickerson, F. B. (2014) Potential role of the combination of galantamine and memantine to improve cognition in schizophrenia, Schizophrenia Res., 157, 84–89.

    Article  Google Scholar 

  184. Makhaeva, G. F., Lushchekina, S. V., Boltneva, N. P., Sokolov, V. B., Grigoriev, V. V., Serebryakova, O. G., Vikhareva, E. A., Aksinenko, A. Y., Barreto, G. E., Aliev, G., and Bachurin, S. O. (2015) Conjugates of γ 3-carbo-lines and phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer disease, Sci. Rep., 5, 13164; doi: 10.1038/ srep13164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Park, J.-H., and Enikolopov, G. (2010) Transient elevation of adult hippocampal neurogenesis after dopamine depletion, Exp. Neurol., 222, 267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Encinas, J. M., Vaahtokari, A., and Enikolopov, G. (2006) Fluoxetine targets early progenitor cells in the adult brain, Proc. Natl. Acad. Sci. USA, 103, 8233–8238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sahay, A., and Hen, R. (2007) Adult hippocampal neuro-genesis in depression, Nat. Neurosci., 10, 1110–1115.

    Article  CAS  PubMed  Google Scholar 

  188. Tsai, C.-Y., Tsai, C.-Y., Arnold, S. J., and Huang, G.-J. (2015) Ablation of hippocampal neurogenesis in mice impairs the response to stress during the dark cycle, Nat. Commun., 6, 8373; doi: 10.1038/ncomms9373.

    Article  CAS  PubMed  Google Scholar 

  189. Zou, J., Wang, W., Pan, Y.-W., Abel, G. M., Storm, D. R., and Xia, Z. (2015) Conditional inhibition of adult neurogenesis by inducible and targeted deletion of ERK5 MAP kinase is not associated with anxiety/depression-like behaviors, eNeuro, 2, UNSP e0014; doi: 10.1523/ENEU-RO.0014-14.2015.

  190. Lecoutey, C., Hedou, D., Freret, T., Giannoni, P., Gaven, F., Since, M., Bouet, V., Ballandonne, C., Corvaisie, S., Malzert, Freon, A., Mignani, S., Cresteil, T., Boulouard, M., Claeysen, S., Rochais, C., and Dallemagne, P. (2014) Design of donecopride, a dual serotonin subtype 4 receptor agonist/acetylcholinesterase inhibitor with potential interest for Alzheimer’s disease treatment, Proc. Natl. Acad. Sci. USA, 111, E3825–E3830; doi: 10.1073/pnas. 1410315111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Rochaism, C., Lecoutey, C., Gaven, F., Giannoni, P., Hamidouche, K., Hedou, D., Dubost, E., Genest, D., Yahiaoui, S., Freret, T., Bouet, V., Dauphin, F., Sopkova de Oliveira, Santos, J., Ballandonne, C., Corvaisier, S., Malzert-Freon, A., Legay, R., Boulouard, M., Claeysen, S., and Dallemagne, P. (2015) Novel multitarget-directed ligands (MTDLs) with acetylcholinesterase (AChE) inhibitory and serotonergic subtype 4 receptor (5-HT4R) agonist activities as potential agents against Alzheimer’s disease: the design of donecopride, J. Med. Chem., 58, 3172–3187.

    Article  CAS  Google Scholar 

  192. Perry, E. K., Johnson, M., Ekonomou, A., Perry, R. H., Ballard, C., and Attems, J. (2012) Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology, Neurobiol. Dis., 47, 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ekonomou, A., Savva, G. M., Brayne, C., Forster, G., Francis, P. T., Johnson, M., Perry, E. K., Attems, J., Somani, A., Minger, S. L., and Ballard, C. G. (2015) Stage-specific changes in neurogenic and glial markers in Alzheimer’s disease, Biol. Psychiatry, 77, 711–719.

    Article  CAS  PubMed  Google Scholar 

  194. Hamilton, L. K., Aumont, A., Julien, C., Vadnais, A., Calon, F., and Fernandes, K. J. L. (2010) Widespread deficits in adult neurogenesis precede plaque and tangle formation in the 3xTg mouse model of Alzheimer’s disease, Eur. J. Neurosci., 32, 905–920.

    Article  PubMed  Google Scholar 

  195. Gilbert, M. E., Rovet, J., Chen, Z., and Koibuchi, N. (2012) Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences, Neurotoxicology, 33, 842–852.

    Article  PubMed  Google Scholar 

  196. Remaud, S., Gothie, J.-D., Morvan-Dubois, G., and Demeneix, B. A. (2014) Thyroid hormone signaling and adult neurogenesis in mammals, Front. Endocrinol., 5, 62; doi: 10.3389/fendo.2014.00062.

    Article  Google Scholar 

  197. Preau, L., Fini, J. B., Morvan-Dubois, G., and Demeneix, B. (2015) Thyroid hormone signaling during early neurogenesis and its significance as a vulnerable window for endocrine disruption, Biochim. Biophys. Acta, 1849, 112–121.

    Article  CAS  PubMed  Google Scholar 

  198. Roberts, S. C., Bianco, A. C., and Stapleton, H. M. (2015) Disruption of type 2 iodothyronine deiodinase activity in cultured human glial cells by polybrominated diphenyl ethers, Chem. Res. Toxicol., 28, 1265–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Modi, N., Lewis, H., Al-Naqeeb, N., Ajayi-Obe, M., Dore, C. J., and Rutherford, M. (2001) The effects of repeated antenatal glucocorticoid therapy on the developing brain, Pediatr. Res., 50, 581–585.

    Article  CAS  PubMed  Google Scholar 

  200. Sundberg, M., Savola, S., Hienola, A., Korhonen, L., and Lindholm, D. (2006) Glucocorticoid hormones decrease proliferation of embryonic neural stem cells through ubiquitin-mediated degradation of cyclin D1, J. Neurosci., 26, 5402–5410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Anacker, C., Cattaneo, A., Luoni, A., Musaelyan, K., Zunszain, P. A., Milanesi, E., Rybka, J., Berry, A., Cirulli, F., Thuret, S., Price, J., Riva, M. A., Gennarelli, M., Rybka, J., Berry, A., Cirulli, F., Thuret, S., Price, J., Riva, M. A., Gennarelli, M., and Pariante, C. M. (2013) Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis, Neuropsychopharmacology, 38, 872–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Montaron, M. F., Petry, K. G., Rodriguez, J. J., Marinelli, M., Aurousseau, C., Rougon, G., Le Moal, M., and Abrous, D. N. (1999) Adrenalectomy increases neurogenesis but not PSA-NCAM expression in aged dentate gyrus, Eur. J. Neurosci., 11, 1479–1485.

    Article  CAS  PubMed  Google Scholar 

  203. Wang, J., Lu, J., Bond, M. C., Chen, M., Ren, X. R., Lyerly, H. K., Barak, L. S., and Chen, W. (2010) Identification of select glucocorticoids as smoothened agonists: potential utility for regenerative medicine, Proc. Natl. Acad. Sci. USA, 107, 9323–9328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Fischer, A. K., von Rosenstiel, P., Fuchs, E., Goula, D., Almeida, O. F., and Czeh, B. (2002) The prototypic mineralocorticoid receptor agonist aldosterone influences neurogenesis in the dentate gyrus of the adrenalectomized rat, Brain Res., 947, 290–293.

    Article  CAS  PubMed  Google Scholar 

  205. Munier, M., Meduri, G., Viengchareun, S., Leclerc, P., Le Menuet, D., and Lombes, M. (2010) Regulation of mineralocorticoid receptor expression during neuronal differentiation of murine embryonic stem cells, Endocrinology, 151, 2244–2254.

    Article  CAS  PubMed  Google Scholar 

  206. Munier, M., Law, F., Meduri, G., Le Menuet, D., and Lombes, M. (2012) Mineralocorticoid receptor overexpression facilitates differentiation and promotes survival of embryonic stem cell-derived neurons, Endocrinology, 153, 1330–1340.

    Article  CAS  PubMed  Google Scholar 

  207. Crochemore, C., Lu, J., Wu, Y., Liposits, Z., Sousa, N., Holsboer, F., and Almeida, O. F. (2005) Direct targeting of hippocampal neurons for apoptosis by glucocorticoids is reversible by mineralocorticoid receptor activation, Mol. Psychiatry, 10, 790–798.

    Article  CAS  PubMed  Google Scholar 

  208. Androutsellis-Theotokis, A., Chrousos, G. P., McKay, R. D., DeCherney, A. H., and Kino, T. (2013) Expression profiles of the nuclear receptors and their transcriptional coregulators during differentiation of neural stem cells, Hormone Metab. Res., 45, 159–168.

    CAS  Google Scholar 

  209. Gruver-Yates, A. L., and Cidlowski, J. A. (2013) Tissuespecific actions of glucocorticoids on apoptosis: a double-edged sword, Cells, 26, 202–223.

    Article  CAS  Google Scholar 

  210. Zhao, C., Deng, W., and Gage, F. H. (2008a) Mechanisms and functional implications of adult neurogenesis, Cell, 132, 645–660.

    Article  CAS  PubMed  Google Scholar 

  211. Vazquez, D. M., Neal, C. R., Patel, P. D., Kaciroti, N., and Lopez, J. F. (2012) Regulation of corticoid and sero-tonin receptor brain system following early life exposure of glucocorticoids: long term implications for the neurobiology of mood, Psychoneuroendocrinology, 37, 421–437.

    Article  CAS  PubMed  Google Scholar 

  212. Gray, J. D., Milner, T. A., and McEwen, B. S. (2013) Dynamic plasticity: the role of glucocorticoids, brainderived neurotrophic factors and other trophic factors, Neuroscience, 239, 214–227.

    Article  CAS  PubMed  Google Scholar 

  213. Lambert, W. M., Xu, C.-F., Neubert, T. A., Chao, M. V., Garabedian, M. J., and Jeanneteau, F. D. (2013) Brainderived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation, Mol. Cell. Biol., 33, 3700–3714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Boku, S., Nakagawa, S., and Koyama, T. (2010) Glucocorticoids and lithium in adult hippocampal neurogenesis, Vitamins Hormones, 82, 421–431.

    Article  CAS  PubMed  Google Scholar 

  215. Gray, J. D., and McEwen, B. S. (2013) Lithium’s role in neural plasticity and its implications for mood disorders, Acta Psychiatr. Scand., 128, 347–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Du, X., and Pang, T. Y. (2015) Is dysregulation of the HPA mediating co-morbid depression in neurodegenerative diseases? Front. Psychiatry, 6, 32; doi: 10.3389/fpsyt.2015. 00032.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Shetty, A. K., Hattiangady, B., and Shetty, G. A. (2005) Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes, Glia, 51, 173–186.

    Article  PubMed  Google Scholar 

  218. Shetty, G. A., Hattiangady, B., and Shetty, A. K. (2013) Neural stem cell- and neurogenesis-related gene expression profiles in the young and aged dentate gyrus, Age, 35, 2165–2176.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Kang, W., and Hebert, J. M. (2015) FGF signaling is necessary for neurogenesis in young mice and sufficient to reverse its decline in old mice, J. Neurosci., 35, 10217–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Buckwalter, M. S., Yamane, M., Coleman, B. S., Ormerod, B. K., Chin, J. T., Palmer, T., and Wyss-Coray, T. (2006) Chronically increased transforming growth factor-beta 1 strongly inhibits hippocampal neurogenesis in aged mice, Am. J. Pathol., 169, 154–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Dias, J. M., Alekseenko, Z., Applequist, J. M., and Ericson, J. (2014) TGFβ signaling regulates temporal neurogenesis and potency of neural stem cells in the CNS, Neuron, 84, 927–939.

    Article  CAS  PubMed  Google Scholar 

  222. Kanai, M. I., Okabe, M., and Hiromi, Y. (2005) Seven-up controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts, Dev. Cell, 8, 203–213.

    Article  CAS  PubMed  Google Scholar 

  223. Cleary, M. D., and Doe, C. Q. (2006) Regulation of neuroblast competence: multiple temporal identity factors specify distinct neuronal fates within a single early competence window, Genes Dev., 20, 429–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Mattar, P., Ericson, J., Blackshaw, S., and Cayouette, M. (2015) A conserved regulatory logic controls temporal identity in mouse neural progenitors, Neuron, 85, 497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Boije, H., Rulands, S., Dudczig, S., Simons, B. D., and Harris, W. A. (2015) The independent probabilistic firing of transcription factors: a paradigm for clonal variability in the zebrafish retina, Dev. Cell, 34, 532–543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Evgen’ev, M. B., Krasnov, G. S., Nesterova, I. V., Garbuz, D. G., Karpov, V. L., Morozov, A. V., Snezhkina, A. V., Samokhin, A. N., Sergeev, A., Kulikov, A. M., and Bobkova, N. V. (2017) Molecular mechanisms underlying neuroprotective effect of intranasal administration of human Hsp70 in mouse model of Alzheimer’s disease, J. Alzheimer’s Dis., 59, 1415–1426.

    Article  CAS  Google Scholar 

  227. Bobkova, N. V., Evgen’ev, M., Garbuz, D. G., Kulikov, A. M., Morozov, A., Samokhin, A., Velmeshev, D., Medvinskaya, N., Nesterova, I., Pollock, A., and Nudler, E. (2015) Exogenous Hsp70 delays senescence, and improves cognitive function in aging mice, Proc. Natl. Acad. Sci. USA, 112, 16006–16011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Shende, P., Bhandarkar, S., and Prabhakar, B. (2019) Heat shock proteins and their protective roles in stem cell biology, Stem Cell Rev. Rep., 15, 637–651; doi: 10.1007/ s12015-019-09903-5.

    Article  CAS  PubMed  Google Scholar 

  229. Fan, G. C. (2012) Role of heat shock proteins in stem cell behavior, Progr. Mol. Biol. Transl. Sci., 111, 305–322.

    Article  CAS  Google Scholar 

  230. Nigro, A., Mauro, L., Giordano, F., Panza, S., Iannacone, R., Liuzzi, G. M., Aquila, S., De Amicis, F., Cellini, F., Indiveri, C., and Panno, M. L. (2016) Recombinant Arabidopsis HSP70 sustains cell survival and metastatic potential of breast cancer cells, Mol. Cancer Ther., 15, 1063–1073.

    Article  CAS  PubMed  Google Scholar 

  231. Ohba, H., Chiyoda, T., Endo, E., Yano, M., Hayakawa, Y., Sakaguchi, M., Darnell, R. B., Okano, H. J., and Okano, H. (2004) Sox21 is a repressor of neuronal differentiation and is antagonized by YB-1, Neurosci. Lett., 358, 157–160.

    Article  CAS  PubMed  Google Scholar 

  232. Fotovati, A., Abu-Ali, S., Wang, P. S., Deleyrolle, L. P., Lee, C., Triscott, J., Chen, J. Y., Franciosi, S., Nakamura, Y., Sugita, Y., Uchiumi, T., Kuwano, M., Leavitt, B. R., Singh, S. K., Jury, A., Jones, C., Wakimoto, H., Reynolds, B. A., Pallen, C. J., and Dunn, S. E. (2011) YB-1 bridges neural stem cells and brain tumor-initiating cells via its roles in differentiation and cell growth, Cancer Res., 71, 5569–5578.

    Article  CAS  PubMed  Google Scholar 

  233. Guo, C., Xue, Y., Yang, G., Yin, S., Shi, W., Cheng, Y., Yan, X., Fan, S., Zhang, H., and Zeng, F. (2016) Nanog RNA-binding proteins YBX1 and ILF3 affect pluripotency of embryonic stem cells, Cell Biol. Int., 40, 847–860.

    Article  CAS  PubMed  Google Scholar 

  234. Yang, F., Cui, P., Lu, Y., and Zhang, X. (2019) Requirement of the transcription factor YB-1 for maintaining the stemness of cancer stem cells and reverting differentiated cancer cells into cancer stem cells, Stem Cell Res. Ther., 10, 233; doi: 10.1186/s13287-019-1360-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  235. Bernal, G. M., and Peterson, D. A. (2004) Neural stem cells as therapeutic agents for age-related brain repair, Aging Cell, 3, 345–351.

    Article  CAS  PubMed  Google Scholar 

  236. Wang, R., Dineley, K. T., Sweatt, J. D., and Zheng, H. (2004) Presenilin 1 familial Alzheimer’s disease mutation leads to defective associative learning and impaired adult neurogenesis, Neuroscience, 126, 305–312.

    Article  CAS  PubMed  Google Scholar 

  237. Chevallier, N. L., Soriano, S., Kang, D. E., Masliah, E., Hu, G., and Koo, E. H. (2005) Perturbed neurogenesis in the adult hippocampus associated with presenilin-1 A246E mutation, Am. J. Pathol., 167, 151–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Boekhoorn, K., Joels, M., and Lucassen, P. J. (2006) Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus, Neurobiol. Dis., 24, 1–14.

    Article  CAS  PubMed  Google Scholar 

  239. Cummings, B. J., Su, J. H., and Cotman, C. W. (1993) Neuritic involvement within bFGF immunopositive plaques of Alzheimer’s disease, Exp. Neurol., 124, 315–325.

    Article  CAS  PubMed  Google Scholar 

  240. Caille, I., Allinquant, B., Dupont, E., Bouillot, C., Langer, A., Muller, U., and Prochiantz, A. (2004) Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone, Development, 131, 2173–2181.

    Article  CAS  PubMed  Google Scholar 

  241. Ekdahl, C. T., Kokaia, Z., and Lindvall, O. (2009) Brain inflammation and adult neurogenesis: the dual role of microglia, Neuroscience, 158, 1021–1029.

    Article  CAS  PubMed  Google Scholar 

  242. Stellos, K., Panagiota, V., Sachsenmaier, S., Trunk, T., Straten, G., Leyhe, T., Seizer, P., Geisler, T., Gawaz, M., and Laske, C. (2010) Increased circulating CD34+/CD133+ progenitor cells in Alzheimer’s disease patients with moderate to severe dementia: evidence for vascular repair and tissue regeneration? J. Alzheimer’s Dis., 19, 591–600.

    Article  Google Scholar 

  243. Bigalke, B., Schreitmuller, B., Sopova, K., Paul, A., Stransky, E., Gawaz, M., Stellos, K., and Laske, C. (2011) Adipocytokines and CD34+ progenitor cells in Alzheimer’s disease, PLoS One, 6, e20286; doi: 10.1371/ journal.pone.0020286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Lee, H., and Thuret, S. (2018) Adult human hippocampal neurogenesis: controversy and evidence, Trends Mol. Med., 24, 521–522.

    Article  PubMed  Google Scholar 

  245. Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., Kuhn, H. G., Jessberger, S., Frankland, P. W., Cameron, H. A., Gould, E., Hen, R., Abrous, D. N., Toni, N., Schinder, A. F., Zhao, X., Lucassen, P. J., and Frisen, J. (2018) Human adult neurogenesis: evidence and remaining questions, Cell Stem Cell, 23, 25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Paredes, M. F., Sorrells, S. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K., Chang, E. F., Gutierrez, M. A. J., Kriegstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang, Z., and Alvarez-Buylla, A. (2018) Does adult neurogenesis persist in the human hippocampus? Cell Stem Cell, 23, 780–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Snyder, J. S., (2018) Questioning human neurogenesis, Nature, 555, 315–316.

    Article  CAS  PubMed  Google Scholar 

  248. Curtis, M. A., Kam, M., Nannmark, U., Anderson, M. F., Axell, M. Z., Wikkelso, C., Holtas, S., van Roon-Mom, W. M., Bjork-Eriksson, T., Nordborg, C., Frisen, J., Dragunow, M., Faull, R. L., and Eriksson, P. S. (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension, Science, 315, 1243–1299.

    Article  CAS  PubMed  Google Scholar 

  249. Knoth, R., Singec, I., Ditter, M., Pantazis, G., Capetian, P., Meyer, R. P., Horvat, V., Volk, B., and Kempermann, G. (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years, PLoS One, 5, e8809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Ernst, A., Alkass, K., Bernard, S., Salehpour, M., Perl, S., Tis-dale, J., Possnert, G., Druid, H., and Frisen, J. (2014) Neurogenesis in the striatum of the adult human brain, Cell, 156, 1072–1083.

    Article  CAS  PubMed  Google Scholar 

  251. Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Saleh-pour, M., Huttner, H. B., Bostrom, E., Westerlund, I., Vial, C., Buchholz, B. A., Possnert, G., Mash, D. C., Druid, H., and Frisen, J. (2013) Dynamics of hippocampal neurogenesis in adult humans, Cell, 153, 1219–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Moreno-Jimenez, E. P., Flor-Garcia, M., Terreros-Roncal, J., Rabano, A., Cafini, F., Pallas-Bazarra, N., Avila, J., and Llorens-Martin, M. (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease, Nat. Med., 25, 554–560.

    Article  CAS  PubMed  Google Scholar 

  253. Sanai, N., Nguyen, T., Ihrie, R. A., Mirzadeh, Z., Tsai, H. H., Wong, M., Gupta, N., Berger, M. S., Huang, E., Garcia-Ver-dugo, J. M., Rowitch, D. H., and Alvarez-Buylla, A. (2011) Corridors of migrating neurons in the human brain and their decline during infancy, Nature, 478, 382–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Dennis, C. V., Suh, L. S., Rodriguez, M. L., Kril, J., and Jand, G. T. (2016) Human adult neurogenesis across the ages: an immunohistochemical study, Neuropathol. Appl. Neurobiol., 42, 621–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K. I., Chang, E. F., Gutierrez, A. J., Kriegstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang, Z., and Alvarez-Buylla, A. (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults, Nature, 555, 377–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosoklija, G. B., Stankov, A., Arango, V., Dwork, A. J., Hen, R., and Mann, J. J. (2018) Human hippocampal neurogenesis persists throughout aging, Cell Stem Cell, 22, 589–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Curtis, M. A., Penney, E. B., Pearson, A. G., van Roon-Mom, W. M., Butterworth, N. J., Dragunow, M., Connor, B., and Faull, R. L. (2003) Increased cell proliferation and neurogenesis in the adult human Huntington’s disease brain, Proc. Natl. Acad. Sci. USA, 100, 9023–9027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Liu, Y. W., Curtis, M. A., Gibbons, H. M., Mee, E. W., Bergin, P. S., Teoh, H. H., Connor, B., Dragunow, M., and Faull, R. L. (2008) Doublecortin expression in the normal and epileptic adult human brain, Eur. J. Neurosci., 28, 2254–2265.

    Article  CAS  PubMed  Google Scholar 

  259. Encinas, J. M., Michurina, T. V., Peunova, N., Park, J. H., Tordo, J., Peterson, D. A., Fishell, G., Koulakov, A., and Enikolopov, G. (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus, Cell Stem Cell, 8, 566–579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Qiang, L., Fujita, R., Yamashita, T., Angulo, S., Rhinn, H., Rhee, D., Doege, C., Chau, L., Aubry, L., Vanti, W. B., Moreno, H., and Abeliovich, A. (2011) Directed conversion of Alzheimer’s disease patient skin fibroblasts into functional neurons, Cell, 146, 359–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Vierbuchen, T., Ostermeier, A., Pang, Z. P., Kokubu, Y., Sudhof, T. C., and Wernig, M. (2010) Direct conversion of fibroblasts to functional neurons by defined factors, Nature, 463, 1035–1041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Ambasudhan, R., Talantova, M., Coleman, R., Yuan, X., Zhu, S., Lipton, S. A., and Ding, S. (2011) Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions, Cell Stem Cell, 9, 113–118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Pang, Z. P., Yang, N., Vierbuchen, T., Ostermeier, A., Fuentes, D. R., Yang, T. Q., Citri, A., Sebastiano, V., Marro, S., Sudhof, T. C., and Wernig, M. (2011) Induction of human neuronal cells by defined transcription factors, Nature, 476, 220–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Greber, B., Yang, J. H., Lee, H. T., Schwamborn, J. C., Storch, A., Scholer, H. R., Han, D. W., and Moritz, S. (2012) Direct reprogramming of fibroblasts into neural stem cells by defined factors, Cell Stem Cell, 10, 465–472.

    Article  PubMed  CAS  Google Scholar 

  265. Treutlein, B., Lee, Q. Y., Camp, J. G., Mall, M., Koh, W., Shariati, S. A. M., Neff, N. F., Skotheim, J. M., Wernig, M., and Quake, S. R. (2016) Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq, Nature, 534, 391–395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Pereira, M., Birtele, M., Shrigley, S., Benitez, J. A., Hedlund, E., Parmar, M., and Ottosson, D. R. (2017) Direct reprogramming of resident NG2 glia into neurons with properties of fast-spiking parvalbumin-containing interneurons, Stem Cell Rep., 9, 742–751.

    Article  CAS  Google Scholar 

  267. Li, H., and Chen, G. (2016) In vivo reprogramming for CNS repair: regenerating neurons from endogenous glial cells, Neuron, 91, 728–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Xue, Y., Ouyang, K., Huang, J., Zhou, Y., Ouyang, H., Li, H., Wang, G., Wu, Q., Wei, C., Bi, Y., Jiang, L., Cai, Z., Sun, H., Zhang, K., Zhang, Y., Chen, J., and Fu, X. D. (2013) Direct conversion of fibroblasts to neurons by reprogramming PTB-regulated microRNA circuits, Cell, 152, 82–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Liu, M.-L., Zang, T., Zou, Y., Chang, J. C., Gibson, J. R., Huber, K. M., and Zhang, C.-L. (2013) Small molecules enable neurogenin 2 to efficiently convert human fibroblasts into cholinergic neurons, Nat. Commun., 4, 2183; doi: 10.1038/ncomms3183.

    Article  PubMed  CAS  Google Scholar 

  270. Sagal, J., Zhan, X., Jinchong, X., Tilghman, J., Karuppagounder, S. S., Chen, L., Dawson, V. L., Dawson, T. M., Laterra, J., and Ying, M. (2014) Proneural transcription factor Atoh1 drives highly efficient differentiation of human pluripotent stem cells into dopaminergic neurons, Stem Cells Transl. Med., 3, 888–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Noisa, P., Raivio, T., and Cui, W. (2015) Neural progenitor cells derived from human embryonic stem cells as an origin of dopaminergic neurons, Stem Cells Int., 2015, 647437; doi: 10.1155/2015/647437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Inoue, H., Nagata, N., Kurokawa, H., and Yamanaka, S. (2014) IPS cells: a game changer for future medicine, EMBO J., 33, 409–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Ross, C. A., and Akimov, S. S. (2014) Human-induced pluripotent stem cells: potential for neurodegenerative diseases, Hum. Mol. Genet., 23, R17-R26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Wurst, W., and Prakash, N. (2014) Wnt1-regulated genetic networks in midbrain dopaminergic neuron development, J. Mol. Cell Biol., 6, 34–41.

    Article  CAS  PubMed  Google Scholar 

  275. Raitano, S., Ordovas, L., De Muynck, L., Guo, W., Espuny-Camacho, I., Geraerts, M., Khurana, S., Vanuytsel, K., Toth, B. I., Voets, T., Vandenberghe, R., Cathomen, T., Van Den Bosch, L., Vanderhaeghen, P., Van Damme, P., and Verfaillie, C. M. (2015) Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia, Stem Cell Rep., 4, 16–24.

    Article  CAS  PubMed  Google Scholar 

  276. Stonesifer, C., Corey, S., Ghanekar, S., Diamandis, Z., Acosta, S. A., and Borlongan, C. V. (2017) Stem cell therapy for abrogating stroke-induced neuroinflammation and relevant secondary cell death mechanisms, Progr. Neurobiol., 158, 94–131.

    Article  CAS  Google Scholar 

  277. Orack, J. C., Deleidi, M., Pitt, D., Mahajan, K., Nicholas, J. A., Boster, A. L., Racke, M. K., Comabella, M., Watanabe, F., and Imitola, J. (2015) Modeling multiple sclerosis with stem cell biological platforms: toward functional validation of cellular and molecular phenotypes in inflammation-induced neurodegeneration, Stem Cells Transl. Med., 4, 252–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Wainger, B. J., Buttermore, E. D., Oliveira, J. T., Mellin, C., Lee, S., Saber, W. A., Wang, J., Ichida, J. K., Chiu, I. M., Barrett, L., Huebner, E. A., Bilgin, C., Tsujimoto, N., Brenneis, C., Kapur, K., Rubin, L. L., Eggan, K., and Woolf, C. J. (2015) Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts, Nat. Neurosci., 18, 17–24.

    Article  CAS  PubMed  Google Scholar 

  279. Lemey, C., Milhavet, O., and Lemaitre, J. (2015) iPSCs as a major opportunity to understand and cure age-related diseases, Biogerontology, 16, 399–410.

    Article  PubMed  Google Scholar 

  280. Feng, W., Dai, Y., Mou, L., Cooper, D. K. C., Shi, D., and Cai, Z. (2015) The potential of the combination of CRISPR/Cas9 and pluripotent stem cells to provide human organs from chimaeric pigs, Int. J. Mol. Sci., 16, 6545–6556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Dow, L. E. (2015) Modeling disease in vivo with CRISPR/Cas9, Trends Mol. Med., 21, 609–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Qiang, L., Fujita, R., and Abeliovich, A. (2013) Remodeling neurodegeneration: somatic cell reprogramming-based models of adult neurological disorders, Neuron, 78, 957–969.

    Article  CAS  PubMed  Google Scholar 

  283. Zhang, Y. L., Kim, M. S., Jia, B. S., Yan, J. Q., Zuniga-Hertz, J. P., Han, C., and Cai, D. S. (2017) Hypothalamic stem cells control ageing speed partly through exosomal miRNAs, Nature, 548, 52–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Zhang, L., Yin, J. C., Yeh, H., Ma, N. X., Lee, G., Chen, X. A., Wang, Y., Lin, L., Chen, L., Jin, P., Wu, G. Y., and Chen, G. (2015) Small molecules efficiently reprogram human astroglial cells into functional neurons, Cell Stem Cell, 17, 735–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Brulet, R., Matsuda, T., Zhang, L., Miranda, C., Giacca, M., Kaspar, B. K., Nakashima, K., and Hsieh, J. (2017) NEUROD1 instructs neuronal conversion in non-reactive astrocytes, Stem Cell Rep., 8, 1506–1515.

    Article  CAS  Google Scholar 

  286. Torper, O., and Gotz, M. (2017) Brain repair from intrinsic cell sources: turning reactive glia into neurons, Progr. Brain Res., 230, 69–97.

    Article  Google Scholar 

  287. Liau, B. B., Sievers, C., Donohue, L. K., Gillespie, S. M., Flavahan, W. A., Miller, T. E., Venteicher, A. S., Hebert, C. H., Carey, C. D., Rodig, S. J., Shareef, S. J., Najm, F. J., van Galen, P., Wakimoto, H., Cahill, D. P., Rich, J. N., Aster, J. C., Suva, M. L., Patel, A. P., and Bernstein, B. E. (2017) Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance, Cell Stem Cell, 20, 233–246.

    Article  CAS  PubMed  Google Scholar 

  288. Park, N. I., Guilhamon, P., Desai, K., Mcadam, R. F., Langille, E., O’Connor, M., Lan, X., Whetstone, H., Coutinho, F. J., Vanner, R. J., Ling, E., Prinos, P., Lee, L., Selvadurai, H., Atwal, G., Kushida, M., Clarke, I. D., Voisin, V., Cusimano, M. D., Bernstein, M., Das, S., Bader, G., Arrowsmith, C. H., Angers, S., Huang, X., Lupien, M., and Dirks, P. B. (2017) ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells, Cell Stem Cell, 21, 209–224.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.L. acknowledges the support by the Ministry of Education and Science of the Russian Federation (Agreement no. 02.A03.21.0003 dated August 28, 2013).

Funding

Funding. This work was supported by grant from the Russian Science Foundation (no. 18–15–00392).

Author information

Authors and Affiliations

Authors

Contributions

Contributions. All authors provided substantial contributions to the discussions of the content, made significant contributions to the writing of the article and contributed equally to the review and editing of the manuscript before submission.

Corresponding author

Correspondence to N. V. Bobkova.

Ethics declarations

Compliance to ethical norms. This article does not contain description of studies with human participants or animals performed by any of the authors.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial or in any other area.

Russian Text © The Author(s), 2020, published in Uspekhi Biologicheskoi Khimii, 2020, Vol. 60, pp. 227–276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkova, N.V., Poltavtseva, R.A., Leonov, S.V. et al. Neuroregeneration: Regulation in Neurodegenerative Diseases and Aging. Biochemistry Moscow 85 (Suppl 1), 108–130 (2020). https://doi.org/10.1134/S0006297920140060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920140060

Keywords

Navigation