Skip to main content

Advertisement

Log in

The Interesting Interplay Between Interneurons and Adult Hippocampal Neurogenesis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation. While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and maturation of adult-generated cells in the dentate gyrus. Here, we review the current state of our understanding on the interplay between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension of the regulation and function of adult hippocampal neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kempermann G (2011) Neural stem cells. Adult neurogenesis 2: stem cells and neuronal development in the adult brain, 2nd edn. Oxford University Press, New York, pp 51–106

    Google Scholar 

  2. Lisman JE, Grace AA (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–713

    PubMed  CAS  Google Scholar 

  3. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6:119–130

    PubMed  CAS  Google Scholar 

  4. Eichenbaum H (2004) Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron 44:109–120

    PubMed  CAS  Google Scholar 

  5. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    PubMed  CAS  Google Scholar 

  6. Gould E, Tanapat P, McEwen BS, Flugge G, Fuchs E (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95:3168–3171

    PubMed  CAS  Google Scholar 

  7. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    PubMed  CAS  Google Scholar 

  8. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    PubMed  CAS  Google Scholar 

  9. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    PubMed  Google Scholar 

  10. Mandyam CD, Wee S, Crawford EF, Eisch AJ, Richardson HN et al (2008) Varied access to intravenous methamphetamine self-administration differentially alters adult hippocampal neurogenesis. Biol Psychiatry 64:958–965

    PubMed  CAS  Google Scholar 

  11. Noonan MA, Bulin SE, Fuller DC, Eisch AJ (2010) Reduction of adult hippocampal neurogenesis confers vulnerability in an animal model of cocaine addiction. J Neurosci 30:304–315

    PubMed  CAS  Google Scholar 

  12. Noonan MA, Choi KH, Self DW, Eisch AJ (2008) Withdrawal from cocaine self-administration normalizes deficits in proliferation and enhances maturity of adult-generated hippocampal neurons. J Neurosci 28:2516–2526

    PubMed  CAS  Google Scholar 

  13. Canales JJ (2007) Adult neurogenesis and the memories of drug addiction. Eur Arch Psychiatry Clin Neurosci 257:261–270

    PubMed  Google Scholar 

  14. DeCarolis NA, Eisch AJ (2010) Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 58:884–893

    PubMed  CAS  Google Scholar 

  15. David DJ, Wang J, Samuels BA, Rainer Q, David I et al (2010) Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. Neuroscientist 16:578–591

    PubMed  Google Scholar 

  16. Eisch AJ, Cameron HA, Encinas JM, Meltzer LA, Ming GL et al (2008) Adult neurogenesis, mental health, and mental illness: hope or hype? J Neurosci 28:11785–11791

    PubMed  CAS  Google Scholar 

  17. Abrous DN, Koehl M, Le Moal M (2005) Adult neurogenesis: from precursors to network and physiology. Physiol Rev 85:523–569

    PubMed  CAS  Google Scholar 

  18. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    PubMed  CAS  Google Scholar 

  19. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    PubMed  CAS  Google Scholar 

  20. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    PubMed  CAS  Google Scholar 

  21. Arguello AA, Fischer SJ, Schonborn JR, Markus RW, Brekken RA et al (2009) Effect of chronic morphine on the dentate gyrus neurogenic microenvironment. Neuroscience 159:1003–1010

    PubMed  CAS  Google Scholar 

  22. Heine VM, Zareno J, Maslam S, Joels M, Lucassen PJ (2005) Chronic stress in the adult dentate gyrus reduces cell proliferation near the vasculature and VEGF and Flk-1 protein expression. Eur J Neurosci 21:1304–1314

    PubMed  Google Scholar 

  23. Freund TF, Buzsaki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    PubMed  CAS  Google Scholar 

  24. Kosaka T, Hama K (1986) Three-dimensional structure of astrocytes in the rat dentate gyrus. J Comp Neurol 249:242–260

    PubMed  CAS  Google Scholar 

  25. Lacaille JC, Schwartzkroin PA (1988) Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology. J Neurosci 8:1400–1410

    PubMed  CAS  Google Scholar 

  26. McMahon LL, Kauer JA (1997) Hippocampal interneurons are excited via serotonin-gated ion channels. J Neurophysiol 78:2493–2502

    PubMed  CAS  Google Scholar 

  27. Ge S, Pradhan DA, Ming GL, Song H (2007) GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci 30:1–8

    PubMed  Google Scholar 

  28. Houser CR (2007) Interneurons of the dentate gyrus: an overview of cell types, terminal fields and neurochemical identity. Prog Brain Res 163:217–232

    PubMed  CAS  Google Scholar 

  29. Dayer AG, Cleaver KM, Abouantoun T, Cameron HA (2005) New GABAergic interneurons in the adult neocortex and striatum are generated from different precursors. J Cell Biol 168:415–427

    PubMed  CAS  Google Scholar 

  30. Cheng X, Li Y, Huang Y, Feng X, Feng G et al (2011) Pulse labeling and long-term tracing of newborn neurons in the adult subgranular zone. Cell Res 21:338–349

    PubMed  Google Scholar 

  31. Liu S, Wang J, Zhu D, Fu Y, Lukowiak K et al (2003) Generation of functional inhibitory neurons in the adult rat hippocampus. J Neurosci 23:732–736

    PubMed  Google Scholar 

  32. Rietze R, Poulin P, Weiss S (2000) Mitotically active cells that generate neurons and astrocytes are present in multiple regions of the adult mouse hippocampus. J Comp Neurol 424:397–408

    PubMed  CAS  Google Scholar 

  33. Aguirre AA, Chittajallu R, Belachew S, Gallo V (2004) NG2-expressing cells in the subventricular zone are type C-like cells and contribute to interneuron generation in the postnatal hippocampus. J Cell Biol 165:575–589

    PubMed  CAS  Google Scholar 

  34. Kempermann G, Song H, Gage FH (2008) Neurogenesis in the adult hippocampus. In: Gage FH, Kempermann G, Song H (eds) Adult Neurogenesis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 159–174

    Google Scholar 

  35. Maccaferri G, Lacaille JC (2003) Interneuron diversity series: hippocampal interneuron classifications—making things as simple as possible, not simpler. Trends Neurosci 26:564–571

    PubMed  CAS  Google Scholar 

  36. Han ZS, Buhl EH, Lorinczi Z, Somogyi P (1993) A high degree of spatial selectivity in the axonal and dendritic domains of physiologically identified local-circuit neurons in the dentate gyrus of the rat hippocampus. Eur J Neurosci 5:395–410

    PubMed  CAS  Google Scholar 

  37. Ribak CE, Seress L (1983) Five types of basket cell in the hippocampal dentate gyrus: a combined Golgi and electron microscopic study. J Neurocytol 12:577–597

    PubMed  CAS  Google Scholar 

  38. Ben-Ari Y (2002) Excitatory actions of GABA during development: the nature of the nurture. Nat Rev Neurosci 3:728–739

    PubMed  CAS  Google Scholar 

  39. Zhao C, Teng EM, Summers RG Jr, Ming GL, Gage FH (2006) Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. J Neurosci 26:3–11

    PubMed  CAS  Google Scholar 

  40. Esposito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC et al (2005) Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci 25:10074–10086

    PubMed  CAS  Google Scholar 

  41. Duan X, Kang E, Liu CY, Ming GL, Song H (2008) Development of neural stem cell in the adult brain. Curr Opin Neurobiol 18:108–115

    PubMed  CAS  Google Scholar 

  42. Bonaguidi MA, Wheeler MA, Shapiro JS, Stadel RP, Sun GJ et al (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145:1142–1155

    PubMed  CAS  Google Scholar 

  43. Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B et al (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382

    PubMed  CAS  Google Scholar 

  44. Huttmann K, Sadgrove M, Wallraff A, Hinterkeuser S, Kirchhoff F et al (2003) Seizures preferentially stimulate proliferation of radial glia-like astrocytes in the adult dentate gyrus: functional and immunocytochemical analysis. Eur J Neurosci 18:2769–2778

    PubMed  Google Scholar 

  45. Kobayashi M, Buckmaster PS (2003) Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci 23:2440–2452

    PubMed  CAS  Google Scholar 

  46. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47:803–815

    PubMed  CAS  Google Scholar 

  47. Wang LP, Kempermann G, Kettenmann H (2005) A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci 29:181–189

    PubMed  CAS  Google Scholar 

  48. Bhattacharyya BJ, Banisadr G, Jung H, Ren D, Cronshaw DG et al (2008) The chemokine stromal cell-derived factor-1 regulates GABAergic inputs to neural progenitors in the postnatal dentate gyrus. J Neurosci 28:6720–6730

    PubMed  CAS  Google Scholar 

  49. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL et al (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    PubMed  CAS  Google Scholar 

  50. Ables JL, Decarolis NA, Johnson MA, Rivera PD, Gao Z et al (2010) Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 30:10484–10492

    PubMed  CAS  Google Scholar 

  51. Steiner B, Klempin F, Wang L, Kott M, Kettenmann H et al (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54:805–814

    PubMed  Google Scholar 

  52. Lagace DC, Whitman MC, Noonan MA, Ables JL, DeCarolis NA et al (2007) Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci 27:12623–12629

    PubMed  CAS  Google Scholar 

  53. Duveau V, Laustela S, Barth L, Gianolini F, Vogt KE et al (2011) Spatiotemporal specificity of GABA(A) receptor-mediated regulation of adult hippocampal neurogenesis. Eur J Neurosci 34:362–373

    PubMed  Google Scholar 

  54. Nusser Z, Mody I (2002) Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells. J Neurophysiol 87:2624–2628

    PubMed  CAS  Google Scholar 

  55. Johnson MA, Ables JL, Eisch AJ (2009) Cell-intrinsic signals that regulate adult neurogenesis in vivo: insights from inducible approaches. BMB Rep 42:245–259

    PubMed  CAS  Google Scholar 

  56. Dhaliwal J, Lagace DC (2011) Visualization and genetic manipulation of adult neurogenesis using transgenic mice. Eur J Neurosci 33:1025–1036

    PubMed  Google Scholar 

  57. Deisseroth K, Singla S, Toda H, Monje M, Palmer TD et al (2004) Excitation–neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42:535–552

    PubMed  CAS  Google Scholar 

  58. Gao Z, Ure K, Ables JL, Lagace DC, Nave KA et al (2009) Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci 12:1090–1092

    PubMed  CAS  Google Scholar 

  59. Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13:1647–1652

    PubMed  CAS  Google Scholar 

  60. Overstreet LS, Hentges ST, Bumaschny VF, de Souza FS, Smart JL et al (2004) A transgenic marker for newly born granule cells in dentate gyrus. J Neurosci 24:3251–3259

    PubMed  CAS  Google Scholar 

  61. Plumpe T, Ehninger D, Steiner B, Klempin F, Jessberger S et al (2006) Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation. BMC Neurosci 7:77

    PubMed  Google Scholar 

  62. Toni N, Laplagne DA, Zhao C, Lombardi G, Ribak CE et al (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11:901–907

    PubMed  CAS  Google Scholar 

  63. Toni N, Teng EM, Bushong EA, Aimone JB, Zhao CM et al (2007) Synapse formation on neurons born in the adult hippocampus. Nat Neurosci 10:727–734

    PubMed  CAS  Google Scholar 

  64. Sernagor E, Chabrol F, Bony G, Cancedda L (2010) GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: general rules and differences in diverse systems. Front Cell Neurosci 4:11

    PubMed  Google Scholar 

  65. Sun B, Halabisky B, Zhou Y, Palop JJ, Yu G et al (2009) Imbalance between GABAergic and glutamatergic transmission impairs adult neurogenesis in an animal model of Alzheimer's disease. Cell Stem Cell 5:624–633

    PubMed  CAS  Google Scholar 

  66. Glykys J, Mody I (2007) The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol 582:1163–1178

    PubMed  CAS  Google Scholar 

  67. Jow F, Chiu D, Lim HK, Novak T, Lin S (2004) Production of GABA by cultured hippocampal glial cells. Neurochem Int 45:273–283

    PubMed  CAS  Google Scholar 

  68. Liu QY, Schaffner AE, Chang YH, Maric D, Barker JL (2000) Persistent activation of GABA(A) receptor/Cl(−) channels by astrocyte-derived GABA in cultured embryonic rat hippocampal neurons. J Neurophysiol 84:1392–1403

    PubMed  CAS  Google Scholar 

  69. Kozlov AS, Angulo MC, Audinat E, Charpak S (2006) Target cell-specific modulation of neuronal activity by astrocytes. Proc Natl Acad Sci U S A 103:10058–10063

    PubMed  CAS  Google Scholar 

  70. Scharfman HE, Kunkel DD, Schwartzkroin PA (1990) Synaptic connections of dentate granule cells and hilar neurons: results of paired intracellular recordings and intracellular horseradish peroxidase injections. Neuroscience 37:693–707

    PubMed  CAS  Google Scholar 

  71. Frotscher M, Schlander M, Leranth C (1986) Cholinergic neurons in the hippocampus. A combined light- and electron-microscopic immunocytochemical study in the rat. Cell Tissue Res 246:293–301

    PubMed  Google Scholar 

  72. Frotscher M, Vida I, Bender R (2000) Evidence for the existence of non-GABAergic, cholinergic interneurons in the rodent hippocampus. Neuroscience 96:27–31

    PubMed  CAS  Google Scholar 

  73. Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–414

    PubMed  CAS  Google Scholar 

  74. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1–Ch6). Neuroscience 10:1185–1201

    PubMed  CAS  Google Scholar 

  75. Cooper-Kuhn CM, Winkler J, Kuhn HG (2004) Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. J Neurosci Res 77:155–165

    PubMed  CAS  Google Scholar 

  76. Mohapel P, Leanza G, Kokaia M, Lindvall O (2005) Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiol Aging 26:939–946

    PubMed  CAS  Google Scholar 

  77. Ji D, Dani JA (2000) Inhibition and disinhibition of pyramidal neurons by activation of nicotinic receptors on hippocampal interneurons. J Neurophysiol 83:2682–2690

    PubMed  CAS  Google Scholar 

  78. Encinas JM, Vaahtokari A, Enikolopov G (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci U S A 103:8233–8238

    PubMed  CAS  Google Scholar 

  79. Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    PubMed  CAS  Google Scholar 

  80. Brezun JM, Daszuta A (1999) Serotonin depletion in the adult rat produces differential changes in highly polysialylated form of neural cell adhesion molecule and tenascin-C immunoreactivity. J Neurosci Res 55:54–70

    PubMed  CAS  Google Scholar 

  81. Radley JJ, Jacobs BL (2002) 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res 955:264–267

    PubMed  CAS  Google Scholar 

  82. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    PubMed  CAS  Google Scholar 

  83. Zhao S, Chai X, Frotscher M (2007) Balance between neurogenesis and gliogenesis in the adult hippocampus: role for reelin. Dev Neurosci 29:84–90

    PubMed  CAS  Google Scholar 

  84. Erbel-Sieler C, Dudley C, Zhou Y, Wu X, Estill SJ et al (2004) Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci U S A 101:13648–13653

    PubMed  CAS  Google Scholar 

  85. Curran T, D'Arcangelo G (1998) Role of reelin in the control of brain development. Brain Res Brain Res Rev 26:285–294

    PubMed  CAS  Google Scholar 

  86. Weiss KH, Johanssen C, Tielsch A, Herz J, Deller T et al (2003) Malformation of the radial glial scaffold in the dentate gyrus of reeler mice, scrambler mice, and ApoER2/VLDLR-deficient mice. J Comp Neurol 460:56–65

    PubMed  CAS  Google Scholar 

  87. Forster E, Tielsch A, Saum B, Weiss KH, Johanssen C et al (2002) Reelin, disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci U S A 99:13178–13183

    PubMed  CAS  Google Scholar 

  88. Frotscher M, Haas CA, Forster E (2003) Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb Cortex 13:634–640

    PubMed  Google Scholar 

  89. Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W et al (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    PubMed  CAS  Google Scholar 

  90. Won SJ, Kim SH, Xie L, Wang Y, Mao XO et al (2006) Reelin-deficient mice show impaired neurogenesis and increased stroke size. Exp Neurol 198:250–259

    PubMed  CAS  Google Scholar 

  91. Pesold C, Impagnatiello F, Pisu MG, Uzunov DP, Costa E et al (1998) Reelin is preferentially expressed in neurons synthesizing gamma-aminobutyric acid in cortex and hippocampus of adult rats. Proc Natl Acad Sci U S A 95:3221–3226

    PubMed  CAS  Google Scholar 

  92. Weeber EJ, Beffert U, Jones C, Christian JM, Forster E et al (2002) Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J Biol Chem 277:39944–39952

    PubMed  CAS  Google Scholar 

  93. Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I et al (2005) Modulation of synaptic plasticity and memory by reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567–579

    PubMed  CAS  Google Scholar 

  94. Pujadas L, Gruart A, Bosch C, Delgado L, Teixeira CM et al (2010) Reelin regulates postnatal neurogenesis and enhances spine hypertrophy and long-term potentiation. J Neurosci 30:4636–4649

    PubMed  CAS  Google Scholar 

  95. Gong C, Wang TW, Huang HS, Parent JM (2007) Reelin regulates neuronal progenitor migration in intact and epileptic hippocampus. J Neurosci 27:1803–1811

    PubMed  CAS  Google Scholar 

  96. Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC et al (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24:481–489

    PubMed  CAS  Google Scholar 

  97. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399

    PubMed  CAS  Google Scholar 

  98. Parent JM, Elliott RC, Pleasure SJ, Barbaro NM, Lowenstein DH (2006) Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol 59:81–91

    PubMed  Google Scholar 

  99. Herz J, Beffert U (2000) Apolipoprotein E receptors: linking brain development and Alzheimer's disease. Nat Rev Neurosci 1:51–58

    PubMed  CAS  Google Scholar 

  100. Mahley RW (1988) Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 240:622–630

    PubMed  CAS  Google Scholar 

  101. Xu Q, Bernardo A, Walker D, Kanegawa T, Mahley RW et al (2006) Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J Neurosci 26:4985–4994

    PubMed  CAS  Google Scholar 

  102. Poirier J, Hess M, May PC, Finch CE (1991) Astrocytic apolipoprotein E mRNA and GFAP mRNA in hippocampus after entorhinal cortex lesioning. Brain Res Mol Brain Res 11:97–106

    PubMed  CAS  Google Scholar 

  103. Xu Q, Walker D, Bernardo A, Brodbeck J, Balestra ME et al (2008) Intron-3 retention/splicing controls neuronal expression of apolipoprotein E in the CNS. J Neurosci 28:1452–1459

    PubMed  CAS  Google Scholar 

  104. Andrews-Zwilling Y, Bien-Ly N, Xu Q, Li G, Bernardo A et al (2010) Apolipoprotein E4 causes age- and Tau-dependent impairment of GABAergic interneurons, leading to learning and memory deficits in mice. J Neurosci 30:13707–13717

    PubMed  CAS  Google Scholar 

  105. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annu Rev Med 47:387–400

    PubMed  CAS  Google Scholar 

  106. Li G, Bien-Ly N, Andrews-Zwilling Y, Xu Q, Bernardo A et al (2009) GABAergic interneuron dysfunction impairs hippocampal neurogenesis in adult apolipoprotein E4 knockin mice. Cell Stem Cell 5:634–645

    PubMed  CAS  Google Scholar 

  107. Tran PB, Banisadr G, Ren D, Chenn A, Miller RJ (2007) Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 500:1007–1033

    PubMed  CAS  Google Scholar 

  108. Kolodziej A, Schulz S, Guyon A, Wu DF, Pfeiffer M et al (2008) Tonic activation of CXC chemokine receptor 4 in immature granule cells supports neurogenesis in the adult dentate gyrus. J Neurosci 28:4488–4500

    PubMed  CAS  Google Scholar 

  109. Pieper AA, Wu X, Han TW, Estill SJ, Dang Q et al (2005) The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci U S A 102:14052–14057

    PubMed  CAS  Google Scholar 

  110. Zhao M, Li D, Shimazu K, Zhou YX, Lu B et al (2007) Fibroblast growth factor receptor-1 is required for long-term potentiation, memory consolidation, and neurogenesis. Biol Psychiatry 62:381–390

    PubMed  CAS  Google Scholar 

  111. Ohkubo Y, Uchida AO, Shin D, Partanen J, Vaccarino FM (2004) Fibroblast growth factor receptor 1 is required for the proliferation of hippocampal progenitor cells and for hippocampal growth in mouse. J Neurosci 24:6057–6069

    PubMed  CAS  Google Scholar 

  112. Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122(Pt 4):593–624

    PubMed  Google Scholar 

  113. Gimenez-Llort L, Blazquez G, Canete T, Johansson B, Oddo S et al (2007) Modeling behavioral and neuronal symptoms of Alzheimer's disease in mice: a role for intraneuronal amyloid. Neurosci Biobehav Rev 31:125–147

    PubMed  CAS  Google Scholar 

  114. Kobayashi K (2009) Targeting the hippocampal mossy fiber synapse for the treatment of psychiatric disorders. Mol Neurobiol 39:24–36

    PubMed  CAS  Google Scholar 

  115. Rothman SM, Mattson MP (2010) Adverse stress, hippocampal networks, and Alzheimer's disease. Neuromolecular Med 12:56–70

    PubMed  CAS  Google Scholar 

  116. Burger C (2010) Region-specific genetic alterations in the aging hippocampus: implications for cognitive aging. Front Aging Neurosci 2:140

    PubMed  Google Scholar 

  117. Lazarov O, Marr RA (2010) Neurogenesis and Alzheimer's disease: at the crossroads. Exp Neurol 223:267–281

    PubMed  CAS  Google Scholar 

  118. Knuesel I (2010) Reelin-mediated signaling in neuropsychiatric and neurodegenerative diseases. Prog Neurobiol 91:257–274

    PubMed  CAS  Google Scholar 

  119. Takahashi H, Brasnjevic I, Rutten BP, Van Der Kolk N, Perl DP et al (2010) Hippocampal interneuron loss in an APP/PS1 double mutant mouse and in Alzheimer's disease. Brain Struct Funct 214:145–160

    PubMed  CAS  Google Scholar 

  120. Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44:88–97

    PubMed  CAS  Google Scholar 

  121. Kim J, Basak JM, Holtzman DM (2009) The role of apolipoprotein E in Alzheimer's disease. Neuron 63:287–303

    PubMed  CAS  Google Scholar 

  122. Ohkubo N, Lee YD, Morishima A, Terashima T, Kikkawa S et al (2003) Apolipoprotein E and Reelin ligands modulate tau phosphorylation through an apolipoprotein E receptor/disabled-1/glycogen synthase kinase-3beta cascade. FASEB J 17:295–297

    PubMed  CAS  Google Scholar 

  123. Fatemi SH, Earle JA, McMenomy T (2000) Reduction in reelin immunoreactivity in hippocampus of subjects with schizophrenia, bipolar disorder and major depression. Mol Psychiatry 5(654–663):571

    PubMed  Google Scholar 

  124. Barr AM, Fish KN, Markou A, Honer WG (2008) Heterozygous reeler mice exhibit alterations in sensorimotor gating but not presynaptic proteins. Eur J Neurosci 27:2568–2574

    PubMed  Google Scholar 

  125. Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW (2003) Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet 40:325–332

    PubMed  CAS  Google Scholar 

  126. Houser CR (1990) Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res 535:195–204

    PubMed  CAS  Google Scholar 

  127. Babb TL, Kupfer WR, Pretorius JK, Crandall PH, Levesque MF (1991) Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 42:351–363

    PubMed  CAS  Google Scholar 

  128. Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G et al (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22:5797–5802

    PubMed  CAS  Google Scholar 

  129. Parent JM, Yu TW, Leibowitz RT, Geschwind DH, Sloviter RS et al (1997) Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci 17:3727–3738

    PubMed  CAS  Google Scholar 

  130. D'Alessio L, Konopka H, Lopez EM, Seoane E, Consalvo D et al (2010) Doublecortin (DCX) immunoreactivity in hippocampus of chronic refractory temporal lobe epilepsy patients with hippocampal sclerosis. Seizure 19:567–572

    PubMed  Google Scholar 

  131. Engel T, Schindler CK, Sanz-Rodriguez A, Conroy RM, Meller R et al (2011) Expression of neurogenesis genes in human temporal lobe epilepsy with hippocampal sclerosis. Int J Physiol Pathophysiol Pharmacol 3:38–47

    PubMed  CAS  Google Scholar 

  132. Okamoto OK, Janjoppi L, Bonone FM, Pansani AP, da Silva AV et al (2010) Whole transcriptome analysis of the hippocampus: toward a molecular portrait of epileptogenesis. BMC Genomics 11:230

    PubMed  Google Scholar 

  133. Liu YW, Curtis MA, Gibbons HM, Mee EW, Bergin PS et al (2008) Doublecortin expression in the normal and epileptic adult human brain. Eur J Neurosci 28:2254–2265

    PubMed  CAS  Google Scholar 

  134. Magloczky Z, Wittner L, Borhegyi Z, Halasz P, Vajda J et al (2000) Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience 96:7–25

    PubMed  CAS  Google Scholar 

  135. Siebzehnrubl FA, Blumcke I (2008) Neurogenesis in the human hippocampus and its relevance to temporal lobe epilepsies. Epilepsia 49(Suppl 5):55–65

    PubMed  Google Scholar 

  136. Joels M, Karst H, Krugers HJ, Lucassen PJ (2007) Chronic stress: implications for neuronal morphology, function and neurogenesis. Front Neuroendocrinol 28:72–96

    PubMed  Google Scholar 

  137. Gass P, Kretz O, Wolfer DP, Berger S, Tronche F et al (2000) Genetic disruption of mineralocorticoid receptor leads to impaired neurogenesis and granule cell degeneration in the hippocampus of adult mice. EMBO Rep 1:447–451

    PubMed  CAS  Google Scholar 

  138. Kronenberg G, Kirste I, Inta D, Chourbaji S, Heuser I et al (2009) Reduced hippocampal neurogenesis in the GR(+/−) genetic mouse model of depression. Eur Arch Psychiatry Clin Neurosci 259:499–504

    PubMed  Google Scholar 

  139. Mayer JL, Klumpers L, Maslam S, de Kloet ER, Joels M et al (2006) Brief treatment with the glucocorticoid receptor antagonist mifepristone normalises the corticosterone-induced reduction of adult hippocampal neurogenesis. J Neuroendocrinol 18:629–631

    PubMed  CAS  Google Scholar 

  140. Montaron MF, Piazza PV, Aurousseau C, Urani A, Le Moal M et al (2003) Implication of corticosteroid receptors in the regulation of hippocampal structural plasticity. Eur J Neurosci 18:3105–3111

    PubMed  CAS  Google Scholar 

  141. Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G (2004) Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus. Aging Cell 3:363–371

    PubMed  CAS  Google Scholar 

  142. Czeh B, Simon M, van der Hart MG, Schmelting B, Hesselink MB et al (2005) Chronic stress decreases the number of parvalbumin-immunoreactive interneurons in the hippocampus: prevention by treatment with a substance P receptor (NK1) antagonist. Neuropsychopharmacology 30:67–79

    PubMed  CAS  Google Scholar 

  143. Arancibia S, Payet O, Givalois L, Tapia-Arancibia L (2001) Acute stress and dexamethasone rapidly increase hippocampal somatostatin synthesis and release from the dentate gyrus hilus. Hippocampus 11:469–477

    PubMed  CAS  Google Scholar 

  144. Seidel K, Helmeke C, Poeggel G, Braun K (2008) Repeated neonatal separation stress alters the composition of neurochemically characterized interneuron subpopulations in the rodent dentate gyrus and basolateral amygdala. Dev Neurobiol 68:1137–1152

    PubMed  Google Scholar 

  145. Holm MM, Nieto-Gonzalez JL, Vardya I, Henningsen K, Jayatissa MN et al (2011) Hippocampal GABAergic dysfunction in a rat chronic mild stress model of depression. Hippocampus 21:422–433

    PubMed  CAS  Google Scholar 

  146. Williams TJ, Milner TA (2011) Delta opioid receptors colocalize with corticotropin releasing factor in hippocampal interneurons. Neuroscience 179:9–22

    PubMed  CAS  Google Scholar 

  147. Hu W, Zhang M, Czeh B, Flugge G, Zhang W (2010) Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology 35:1693–1707

    PubMed  CAS  Google Scholar 

  148. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacol (Berl) 134:319–329

    CAS  Google Scholar 

  149. Gronli J, Fiske E, Murison R, Bjorvatn B, Sorensen E et al (2007) Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats. A microdialysis study in an animal model of depression. Behav Brain Res 181:42–51

    PubMed  Google Scholar 

  150. Brambilla P, Perez J, Barale F, Schettini G, Soares JC (2003) GABAergic dysfunction in mood disorders. Mol Psychiatry 8(721–737):715

    Google Scholar 

  151. Castren E, Rantamaki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70:289–297

    PubMed  CAS  Google Scholar 

  152. Tanti A, Belzung C (2010) Open questions in current models of antidepressant action. Br J Pharmacol 159:1187–1200

    PubMed  CAS  Google Scholar 

  153. Sahay A, Hen R (2007) Adult hippocampal neurogenesis in depression. Nat Neurosci 10:1110–1115

    PubMed  CAS  Google Scholar 

  154. Eisch AJ, Harburg GC (2006) Opiates, psychostimulants, and adult hippocampal neurogenesis: insights for addiction and stem cell biology. Hippocampus 16:271–286

    PubMed  CAS  Google Scholar 

  155. Yakel JL, Shao Z (2004) Functional and molecular characterization of neuronal nicotinic ACh receptors in rat hippocampal interneurons. Prog Brain Res 145:95–107

    PubMed  CAS  Google Scholar 

  156. Jones S, Yakel JL (1997) Functional nicotinic ACh receptors on interneurones in the rat hippocampus. J Physiol 504(Pt 3):603–610

    PubMed  CAS  Google Scholar 

  157. Morales M, Hein K, Vogel Z (2008) Hippocampal interneurons co-express transcripts encoding the alpha7 nicotinic receptor subunit and the cannabinoid receptor 1. Neuroscience 152:70–81

    PubMed  CAS  Google Scholar 

  158. Tsou K, Brown S, Sanudo-Pena MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83:393–411

    PubMed  CAS  Google Scholar 

  159. Drake CT, Milner TA (2006) Mu opioid receptors are extensively co-localized with parvalbumin, but not somatostatin, in the dentate gyrus. Neurosci Lett 403:176–180

    PubMed  CAS  Google Scholar 

  160. Stumm RK, Zhou C, Schulz S, Hollt V (2004) Neuronal types expressing mu- and delta-opioid receptor mRNA in the rat hippocampal formation. J Comp Neurol 469:107–118

    PubMed  CAS  Google Scholar 

  161. Hajos N, Freund TF (2002) Distinct cannabinoid sensitive receptors regulate hippocampal excitation and inhibition. Chem Phys Lipids 121:73–82

    PubMed  CAS  Google Scholar 

  162. Drake CT, Chavkin C, Milner TA (2007) Opioid systems in the dentate gyrus. Prog Brain Res 163:245–263

    PubMed  CAS  Google Scholar 

  163. Koob GF (2006) The neurobiology of addiction: a neuroadaptational view relevant for diagnosis. Addiction 101(Suppl 1):23–30

    PubMed  Google Scholar 

  164. Gareri P, De Fazio P, De Sarro G (2002) Neuropharmacology of depression in aging and age-related diseases. Ageing Res Rev 1:113–134

    PubMed  CAS  Google Scholar 

  165. Herrup K (2010) Reimagining Alzheimer's disease—an age-based hypothesis. J Neurosci 30:16755–16762

    PubMed  CAS  Google Scholar 

  166. Stanley DP, Shetty AK (2004) Aging in the rat hippocampus is associated with widespread reductions in the number of glutamate decarboxylase-67 positive interneurons but not interneuron degeneration. J Neurochem 89:204–216

    PubMed  CAS  Google Scholar 

  167. Bernal GM, Peterson DA (2011) Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells. Aging Cell 10:466–482

    PubMed  CAS  Google Scholar 

  168. Shetty AK, Hattiangady B, Shetty GA (2005) Stem/progenitor cell proliferation factors FGF-2, IGF-1, and VEGF exhibit early decline during the course of aging in the hippocampus: role of astrocytes. Glia 51:173–186

    PubMed  Google Scholar 

  169. Lagace DC, Benavides DR, Kansy JW, Mapelli M, Greengard P et al (2008) Cdk5 is essential for adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 105:18567–18571

    PubMed  CAS  Google Scholar 

  170. Piatti VC, Davies-Sala MG, Esposito MS, Mongiat LA, Trinchero MF et al (2011) The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J Neurosci 31:7715–7728

    PubMed  CAS  Google Scholar 

  171. Snyder JS, Choe JS, Clifford MA, Jeurling SI, Hurley P et al (2009) Adult-born hippocampal neurons are more numerous, faster maturing, and more involved in behavior in rats than in mice. J Neurosci 29:14484–14495

    PubMed  CAS  Google Scholar 

  172. Snyder JS, Ramchand P, Rabbett S, Radik R, Wojtowicz JM et al (2011) Septo-temporal gradients of neurogenesis and activity in 13-month-old rats. Neurobiol Aging 32:1149–1156

    PubMed  Google Scholar 

  173. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK et al (2004) Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 28:273–283

    PubMed  CAS  Google Scholar 

  174. Chambers RA, Potenza MN, Hoffman RE, Miranker W (2004) Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology 29:747–758

    PubMed  Google Scholar 

  175. Becker S, Wojtowicz JM (2007) A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn Sci 11:70–76

    PubMed  Google Scholar 

  176. Aimone JB, Gage FH (2011) Modeling new neuron function: a history of using computational neuroscience to study adult neurogenesis. Eur J Neurosci 33:1160–1169

    PubMed  Google Scholar 

  177. Gueneau G, Drouet J, Privat A, Court L (1979) Differential radiosensitivity of neurons and neuroglia of the hippocampus in the adult rabbit. Acta Neuropathol 48:199–209

    PubMed  CAS  Google Scholar 

  178. Mandyam CD, Norris RD, Eisch AJ (2004) Chronic morphine induces premature mitosis of proliferating cells in the adult mouse subgranular zone. J Neurosci Res 76:783–794

    PubMed  CAS  Google Scholar 

  179. Olariu A, Cleaver KM, Shore LE, Brewer MD, Cameron HA (2005) A natural form of learning can increase and decrease the survival of new neurons in the dentate gyrus. Hippocampus 15:750–762

    PubMed  Google Scholar 

  180. Knoth R, Singec I, Ditter M, Pantazis G, Capetian P et al (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5:e8809

    PubMed  Google Scholar 

  181. Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K et al (2003) Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 24:603–613

    PubMed  CAS  Google Scholar 

  182. Gulyas AI, Hajos N, Freund TF (1996) Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 16:3397–3411

    PubMed  CAS  Google Scholar 

  183. Gulyas AI, Miettinen R, Jacobowitz DM, Freund TF (1992) Calretinin is present in non-pyramidal cells of the rat hippocampus-I. A new type of neuron specifically associated with the mossy fibre system. Neuroscience 48:1–27

    PubMed  CAS  Google Scholar 

  184. Forster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267

    PubMed  Google Scholar 

  185. Borhegyi Z, Leranth C (1997) Distinct substance P- and calretinin-containing projections from the supramammillary area to the hippocampus in rats; a species difference between rats and monkeys. Exp Brain Res 115:369–374

    PubMed  CAS  Google Scholar 

  186. Magloczky Z, Acsady L, Freund TF (1994) Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus 4:322–334

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the past figures of Dr. Jessica Ables, Dr. Nathan DeCarolis, and Aparna Sankararaman for inspiring the figures in this review. This work was supported by grants to AJE from the National Institutes of Health and in particular grants from the National Institute on Drug Abuse (R01DA016765, R01DA016765-07S1, K02DA023555, R21DA023701) and grants from the National Alliance for Research on Schizophrenia and Depression and NASA. IM is supported by a postdoctoral fellowship on a Ruth L. Kirschstein National Research Service Award (NRSA) Institutional Research T32 Training Grant (T32DA 007290) from NIDA. The content is solely the responsibility of the authors and does not necessarily represent the official views of these granting organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelia J. Eisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masiulis, I., Yun, S. & Eisch, A.J. The Interesting Interplay Between Interneurons and Adult Hippocampal Neurogenesis. Mol Neurobiol 44, 287–302 (2011). https://doi.org/10.1007/s12035-011-8207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-011-8207-z

Keywords

Navigation