Skip to main content

Advertisement

Log in

iPSCs as a major opportunity to understand and cure age-related diseases

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Cellular senescence plays an important role in the process of aging and is often associated with age-related diseases. Senescence was originally considered as a barrier to cell reprogramming, however we developed a strategy to overcome this hurdle and derive induced pluripotent stem cells (iPSCs) from senescent cells and cells from centenarians. Furthermore we showed that the newly generated iPSCs could be re-differentiated into fully rejuvenated cells. That has increased the known beneficial properties of iPSCs to include them as a tool to model age-related diseases or even to cure them through cell therapy. In this review, we describe the hallmarks of cellular senescence before presenting how we reprogrammed aged and senescent cells into iPSCs and obtained rejuvenated re-differentiated cells. Finally, we take an interest in the way iPSCs can be used to understand and cure age-related diseases and we present their advantages for patient-specific therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Chalabi A, Jones A, Troakes C, King A, Al-Sarraj S, van den Berg LH (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathol 124:339–352

    Article  CAS  PubMed  Google Scholar 

  • Aliaga L, Lai C, Yu J, Chub N, Shim H, Sun L, Xie C, Yang WJ, Lin X, O’Donovan MJ et al (2013) Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons. Hum Mol Genet 22:4293–4305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  • Banito A, Rashid ST, Acosta JC, Li S, Pereira CF, Geti I, Pinho S, Silva JC, Azuara V, Walsh M et al (2009) Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 23:2134–2139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138

    Article  CAS  PubMed  Google Scholar 

  • Blondel S, Jaskowiak AL, Egesipe AL, Le Corf A, Navarro C, Cordette V, Martinat C, Laabi Y, Djabali K, de Sandre-Giovannoli A et al. (2014) Induced pluripotent stem cells reveal functional differences between drugs currently investigated in patients with Hutchinson–Gilford progeria syndrome. Stem Cells Transl Med 3:510–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ (2014) Cell net: network biology applied to stem cell engineering. Cell 158:903–915

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, d’Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  CAS  PubMed  Google Scholar 

  • Childs BG, Sluis BVD, Kirkland JL, Deursen JMV (2012) Clearance of p16Ink4a -positive senescent cells delays ageing- associated disorders. Nature 479:232–236

    Google Scholar 

  • Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collado M, Blasco MA, Serrano M (2007) Cellular senescence in cancer and aging. Cell 130:223–233

    Article  CAS  PubMed  Google Scholar 

  • Coppé JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6:2853–2868

    Article  PubMed  Google Scholar 

  • Coppé JP, Desprez PY, Krtolica A, Campisi J (2014) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev of pathol 5:99–118

    Article  Google Scholar 

  • Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dollé ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J (2014). An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 31(6):722–733

  • Egawa N, Kitaoka S, Tsukita K, Naitoh M, Takahashi K, Yamamoto T, Adachi F, Kondo T, Okita K, Asaka I (2012) Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 4:145ra104

    PubMed  Google Scholar 

  • Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D, Chung Y, Honig GR, Kim KS, Lanza R (2010) Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28:704–712

    Article  PubMed  Google Scholar 

  • Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends genet 23:413–418

    Article  CAS  PubMed  Google Scholar 

  • Freund A, Patil CK, Campisi J (2011) p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J 30:1536–1548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gorgoulis VG, Halazonetis TD (2010) Oncogene-induced senescence: the bright and dark side of the response. Curr Opin Cell Biol 22:816–827

    Article  CAS  PubMed  Google Scholar 

  • Haferkamp S, Scurr LL, Becker TM, Frausto M, Kefford RF, Rizos H (2009) Oncogene-induced senescence does not require the p16(INK4a) or p14ARF melanoma tumor suppressors. J Invest Dermatol 129:1983–1991

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  • Ho JC, Zhou T, Lai WH, Huang Y, Chan YC, Li X, Wong NL, Li Y, Au KW, Guo D et al (2011) Generation of induced pluripotent stem cell lines from 3 distinct laminopathies bearing heterogeneous mutations in lamin A/C. Aging (Albany NY) 3:380–390

    CAS  Google Scholar 

  • Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Isotani A, Hatayama H, Kaseda K, Ikawa M, Okabe M (2011) Formation of a thymus from rat ES cells in xenogeneic nude mouse/rat ES chimeras. Genes Cells 16:397–405

    Article  CAS  PubMed  Google Scholar 

  • Jaskelioff M, Muller FL, Paik J-H, Thomas E, Jiang S, Sahin E, Kost-alimova M, Protopopov A, Cadiñanos J, Horner JW et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice. Nature 469:102–106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeyapalan JC, Sedivy JM (2008) Cellular senescence and organismal aging. Mech Ageing Dev 129:467–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, Kiryu J, Takahashi M (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2:205–218

    Article  CAS  Google Scholar 

  • Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Izpisua Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kondo T, Asai M, Tsukita K, Kutoku Y, Ohsawa Y, Sunada Y, Imamura K, Egawa N, Yahata N, Okita K et al (2013) Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Abeta and differential drug responsiveness. Cell Stem Cell 12:487–496

    Article  CAS  PubMed  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24:2463–2479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113(Pt 20):3613–3622

    CAS  PubMed  Google Scholar 

  • Lapasset L, Milhavet O, Prieur A, Besnard E, Babled A, Aït-Hamou N, Leschik J, Pellestor F, Ramirez J-M, De Vos J, Lehmann S, Lemaitre JM (2011) Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. Genes Dev 25:2248–2253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lehmann J, Schubert S, Emmert S (2014) Xeroderma pigmentosum: diagnostic procedures, interdisciplinary patient care, and novel therapeutic approaches. J Dtsch Dermatol Ges 12:867–872

    PubMed  Google Scholar 

  • Li H, Collado M, Villasante A, Strati K, Ortega S, Canamero M, Blasco MA, Serrano M (2009) The Ink4/Arf locus is a barrier for iPS cell reprogramming. Nature 460:1136–1139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu GH, Barkho BZ, Ruiz S, Diep D, Qu J, Yang SL, Panopoulos AD, Suzuki K, Kurian L, Walsh C et al (2011) Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature 472:221–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu T, Finkel T (2009) Free radicals and senescence. Exp Cell Res 314:1918–1922

    Article  Google Scholar 

  • Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa J-PJ (2010) Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marion RM, Strati K, Li H, Murga M, Blanco R, Ortega S, Fernandez-Capetillo O, Serrano M, Blasco MA (2009) A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460:1149–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maumus M, Guerit D, Toupet K, Jorgensen C, Noel D (2011) Mesenchymal stem cell-based therapies in regenerative medicine: applications in rheumatology. Stem Cell Res Ther 2:14

    Article  PubMed Central  PubMed  Google Scholar 

  • Moiseeva O, Bourdeau V, Roux A, Deschenes-Simard X, Ferbeyre G (2009) Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol 29:4495–4507

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S, Rodriguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118

    Article  CAS  PubMed  Google Scholar 

  • Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae 6:19–40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Noth U, Steinert AF, Tuan RS (2008) Technology insight: adult mesenchymal stem cells for osteoarthritis therapy. Nat Clin Pract Rheumatol 4:371–380

    PubMed  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    Article  CAS  PubMed  Google Scholar 

  • Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, Miwa S, Olijslagers S, Hallinan J, Wipat A et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed Central  PubMed  Google Scholar 

  • Pegoraro G, Nard K, Ute W, Heike G, Katrin H, Misteli T (2010) Aging-related chromatin defects via loss of the NURD complex. Nat Cell Biol 11:1261–1267

    Article  Google Scholar 

  • Pendas AM, Zhou Z, Cadinanos J, Freije JM, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodriguez F, Tryggvason K et al (2002) Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat Genet 31:94–99

    CAS  PubMed  Google Scholar 

  • Piaceri I, Nacmias B, Sorbi S (2013) Genetics of familial and sporadic Alzheimer’s disease. Front Biosci (Elite Ed) 5:167–177

    Google Scholar 

  • Pii E, Olovnikov AM, Physics B, Academy R (1996) Historical perspective telomeres, telomerase, and aging : origin of the theory. Exp Gerontol 31:443–448

    Article  Google Scholar 

  • Rashid T, Kobayashi T, Nakauchi H (2014) Revisiting the flight of Icarus: making human organs from PSCs with large animal chimeras. Cell Stem Cell 15:406–409

    Article  CAS  PubMed  Google Scholar 

  • Rattan SIS (2000) ‘Just a fellow who did his job…′, an interview with Leonard Hayflick. Interview by Suresh I.S. Rattan. Biogerontology 1:79–87

    Article  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodier F, Coppé JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J (2009) Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat Cell Biol 11:973–979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Serrano M, Lin AW, Mccurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16 INK4a. Cell 88:593–602

    Article  CAS  PubMed  Google Scholar 

  • Sharpless NE, DePinho RA (2007) How stem cells age and why this makes us grow old. Nat Rev Mol Cell Biol 8:703–713

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, DePinho RA (2000) Cellular senescence: mitotic clock or culture shock? Cell 102:407–410

    Article  CAS  PubMed  Google Scholar 

  • Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, Oshimura M, Ishigaki Y, Hamasaki K, Kodama Y et al (2014) Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS One 9:e112900

    Article  PubMed Central  PubMed  Google Scholar 

  • Shuo H, Brunet A (2013) Histone methylation makes its mark on longevity. Trends cell biol 22:42–49

    Google Scholar 

  • Sinha JK, Ghosh S, Raghunath M (2014) Progeria: a rare genetic premature ageing disorder. Indian J Med Res 139:667–674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stadtfeld M, Hochedlinger K (2010) Induced pluripotency: history, mechanisms, and applications. Genes Dev 24:2239–2263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155:1119–1130

    Article  CAS  PubMed  Google Scholar 

  • Suhr ST, Chang EA, Rodriguez RM, Wang K, Ross PJ, Beyhan Z, Murthy S, Cibelli JB (2009) Telomere dynamics in human cells reprogrammed to pluripotency. PLoS One 4:e8124

    Article  PubMed Central  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  • Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM (2012) Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell 11:147–152

    Article  CAS  PubMed  Google Scholar 

  • Turner MR, Hardiman O, Benatar M, Brooks BR, Chio A, de Carvalho M, Ince PG, Lin C, Miller RG, Mitsumoto H et al (2013) Controversies and priorities in amyotrophic lateral sclerosis. Lancet Neurol 12:310–322

    Article  CAS  PubMed  Google Scholar 

  • Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vaziri H, Chapman KB, Guigova A, Teichroeb J, Lacher MD, Sternberg H, Singec I, Briggs L, Wheeler J, Sampathkumar J et al (2010) Spontaneous reversal of the developmental aging of normal human cells following transcriptional reprogramming. Regen Med 5:345–363

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Warren ST, Jin P (2013) Toward pluripotency by reprogramming: mechanisms and application. Protein Cell 4:820–832

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Cai X, Wang L, Liao B, Zhang H, Shan Y, Chen Q, Zhou T, Li X, Hou J et al (2013) Generating a non-integrating human induced pluripotent stem cell bank from urine-derived cells. PLoS One 8:e70573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yagi T, Ito D, Okada Y, Akamatsu W, Nihei Y, Yoshizaki T, Yamanaka S, Okano H, Suzuki N (2011) Modeling familial Alzheimer’s disease with induced pluripotent stem cells. Hum Mol Genet 20:4530–4539

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka S (2009) A fresh look at iPS cells. Cell 137:13–17

    Article  CAS  PubMed  Google Scholar 

  • Yang NC, Hu ML (2005) The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol 40:813–819

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Vodyanik Ma, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir Ga, Ruotti V, Stewart R, et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ollivier Milhavet or Jean-Marc Lemaitre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemey, C., Milhavet, O. & Lemaitre, JM. iPSCs as a major opportunity to understand and cure age-related diseases. Biogerontology 16, 399–410 (2015). https://doi.org/10.1007/s10522-015-9579-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-015-9579-7

Keywords

Navigation