Skip to main content
Log in

Neurotrophins of the Fetal Brain and Placenta in Prenatal Hyperhomocysteinemia

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Prenatal hyperhomocysteinemia (PHHC) in pregnant rats was induced by chronic L-methionine loading, resulting in a significant increase in the L-homocysteine content both in the mothers’ blood and blood and brain of fetuses. Significant decrease in the weight of the placenta, fetus, and fetal brain was detected by the morphometric studies on day 20 of pregnancy. PHHC also activated maternal immune system due to the increase in the content of proinflammatory inter-leukin-1β in the rat blood and fetal part of the placenta. PHHC elevated the levels of the brain-derived neurotrophic factor (BDNF, 29 kDa) and nerve growth factor (NGF, 31 kDa) precursors in the placenta and the content of the BDNF isoform (29 kDa) in the fetal brain. The content of neuregulin 1 (NRG1) decreased in the placenta and increased in the fetal brain on day 20 of embryonic development. An increase in the caspase-3 activity was detected in the brains of fetuses subjected to PHHC. It was suggested that changes in the processing of neurotrophins induced by PPHC, oxidative stress, and inflammatory processes initiated by it, as well as apoptosis, play an important role in the development of brain disorders in the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FPP:

fetal part of placenta

HC:

homocysteine

HHC:

hyperhomocysteinemia

IL-1β:

interleukin-1β

IL-6:

inter-leukin-6

MPP:

maternal part of placenta

NGF:

nerve growth factor

NRG1:

neuregulin 1

p75NTR:

p75 neurotrophin receptor

PHHC:

prenatal hyperhomocysteinemia

ROS:

reactive oxygen species

TNF-α:

tumor necrosis factor α

References

  1. Onore, C., Careaga, M., and Ashwood, P. (2012) The role of immune dysfunction in the pathophysiology of autism, Brain Behav. Immun., 26, 383–392; doi: 10.1016/j.bbi. 2011.08.007.

    Article  CAS  PubMed  Google Scholar 

  2. Patterson, P. H. (2009) Immune involvement in schizophrenia and autism: etiology, pathology and animal models, Behav. Brain Res., 204, 313–321; doi: 10.1016/j.bbr. 2008.12.016.

    Article  CAS  PubMed  Google Scholar 

  3. Wahlbeck, K., Forsen, T., Osmond, C., Barker, D. J., and Eriksson, J. G. (2001) Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood, Arch. Gen. Psychiatry, 58, 48–52; doi: 10.1001/archpsyc.58.1.48.

    Article  CAS  PubMed  Google Scholar 

  4. Dhobale, M. V., Pisal, H. R., Mehendale, S. S., and Joshi, S. R. (2013) Differential expression of human placental neurotrophic factors in preterm and term deliveries, Int. J. Dev. Neurosci., 31, 719–723; doi: 10.1016/j.ijdevneu. 2013.09.006.

    Article  CAS  PubMed  Google Scholar 

  5. Garces, M. F., Sanchez, E., Torres-Sierra, A. L., Ruiz-Parra, A. I., Angel-Muller, E., Alzate, J. P., Sanchez, A. Y., Gomez, M. A., Romero, X. C., Castaneda, Z. E., Sanchez-Rebordelo, E., Dieguez, C., Nogueiras, R., and Caminos, J. E. (2014) Brain-derived neurotrophic factor is expressed in rat and human placenta and its serum levels are similarly regulated throughout pregnancy in both species, Clin. Endocrinol. (Oxf.), 81, 141–151; doi: 10.1111/cen.12391.

    Article  CAS  Google Scholar 

  6. Tapia-Arancibia, L., Rage, F., Givalois, L., and Arancibia, S. (2004) Physiology of BDNF: focus on hypothalamic function, Front. Neuroendocrinol., 25, 77–107; doi: 10.1016/j.yfrne.2004.04.001.

    Article  CAS  PubMed  Google Scholar 

  7. Tometten, M., Blois, S., and Arck, P. C. (2005) Nerve growth factor in reproductive biology: link between the immune, endocrine and nervous system? Chem. Immunol. Allergy, 89, 135–148; doi: 10.1159/000087962.

    Article  CAS  PubMed  Google Scholar 

  8. Dammann, O., Bueter, W., Leviton, A., Gressens, P., and Dammann, C. E. (2008) Neuregulin-1: a potential endogenous protector in perinatal brain white matter damage, Neonatology, 93, 182–187; doi: 10.1159/000111119.

    Article  PubMed  Google Scholar 

  9. Esper, R. M., Pankonin, M. S., and Loeb, J. A. (2006) Neuregulins: versatile growth and differentiation factors innervous system development and human disease, Brain Res. Rev., 51, 161–175; doi: 10.1016/j.brainresrev.2005.11.006.

    Article  CAS  PubMed  Google Scholar 

  10. Arytjunyan, A. V., Milyutina, Yu. P., Zaloznyaya, I. V., Pustygina, A. V., Kozina, L. S., and Korenevskii, A. V. (2012) Use of different experimental models of hyperho-mocysteinemia in neurochemical studies, Neurochem. J., 6, 71–76; doi: 10.1134/S1819712411040027.

    Article  CAS  Google Scholar 

  11. Zil’fyan, V. N., and Kumkumadzhyan, V. A. (1970) New technique for sampling blood from small laboratory animals, Zh. Eksp. Klin. Med., 10, 12–14.

    Google Scholar 

  12. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248–254; doi: 10.1006/abio.1976.9999.

    Article  CAS  PubMed  Google Scholar 

  13. Bass, J. J., Wilkinson, D. J., Rankin, D., Phillips, B. E., Szewczyk, N. J., Smith, K., and Atherton, P. J. (2017) An overview of technical considerations for Western blotting applications to physiological research, Scand. J. Med. Sci. Sports, 27, 4–25; doi: 10.1111/sms.12702.

    Article  CAS  PubMed  Google Scholar 

  14. Arutjunyan, A., Kozina, L., Stvolinskiy, S., Bulygina, Y., Mashkina, A., and Khavinson, V. (2012) Pinealon protects the rat offspring from prenatal hyperhomocysteinemia, Int. J. Clin. Exp. Med., 5, 179–185.

    PubMed  PubMed Central  Google Scholar 

  15. Shcherbitskaya, A. D., Milyutina, Y. P., Zaloznyaya, I. V., Arutjunyan, A. V., Nalivaeva, N. N., and Zhuravin, I. A. (2017) The effects of prenatal hyperhomocysteinemia on the formation of memory and the contents of biogenic amines in the rat hippocampus, Neurochem. J., 11, 296–301; doi: 10.1134/s1819712417040080.

    Article  CAS  Google Scholar 

  16. Koz, S. T., Gouwy, N. T., Demir, N., Nedzvetsky, V. S., Etem, E., and Baydas, G. (2010) Effects of maternal hyper-homocysteinemia induced by methionine intake on oxida-tive stress and apoptosis in pup rat brain, Int. J. Dev. Neurosci., 28, 325–329; doi: 10.1016/j.ijdevneu.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  17. Baydas, G., Koz, S. T., Tuzcu, M., and Nedzvetsky, V. S. (2008) Melatonin prevents gestational hyperhomocystein-emia-associated alterations in neurobehavioral developments in rats, J. Pineal Res., 44, 181–188; doi: 10.1111/j.1600-079X.2007.00506.x.

    Article  CAS  PubMed  Google Scholar 

  18. Baydas, G., Koz, S. T., Tuzcu, M., Nedzvetsky, V. S., and Etem, E. (2007) Effects of maternal hyperhomocystein-emia induced by high methionine diet on the learning and memory performance in offspring, Int. J. Dev. Neurosci., 25, 133–139; doi: 10.1016/j.ijdevneu.2007.03.001.

    Article  CAS  PubMed  Google Scholar 

  19. Makhro, A. V., Mashkina, A. P., Solenaya, O. A., Trunova, O. A., Kozina, L. S., Arutjunyan, A. V., and Bulygina, E. R. (2008) Prenatal hyperhomocysteinemia as a model of oxidative stress of the brain, Bull. Exp. Biol. Med., 146, 33–35; doi: 10.1007/s10517-008-0233-0.

    Article  CAS  PubMed  Google Scholar 

  20. Gerasimova, E., Yakovleva, O., Burkhanova, G., Khaertdinov, N., Sitdikova, G., and Ziyatdinova, G. (2017) Effects of maternal hyperhomocysteinemia on the early physical development and neurobehavioral maturation of rat offspring, BioNanoScience, 7, 155–158; doi: 10.1007/s12668-016-0326-6.

    Article  Google Scholar 

  21. Makhro, A. V., Mashkinba, A. P., Solenaya, O. A., Trunova, O. A., Tyulina, O. V., Bulygina, E. R., and Boldyrev, A. A. (2008) Carnosine protects cells from oxidative stress induced by hyperhomocysteinemia, Neurochem. J., 2, 202–208; doi: 10.1134/S1819712408030112.

    Article  Google Scholar 

  22. Tsitsiou, E., Sibley, C. P., D’Souza, S. W., Catanescu, O., Jacobsen, D. W., and Glazier, J. D. (2011) Homocysteine is transported by the microvillous plasma membrane of human placenta, J. Inherit. Metab. Dis., 34, 57–65; doi: 10.1007/s10545-010-9141-3.

    Article  CAS  PubMed  Google Scholar 

  23. Arutjunyan, A. V., Kozina, L. S., and Arutyunov, V. A. (2010) Toxic effect of prtenataly hyperhomocysteinemia on offsprings (experimental study), Zh. Akusher. Zhen. Bolez., 59, 16–23.

    Google Scholar 

  24. Arutjunyan, A. V., Pustygina, A. V., Milyutina, Yu. P., Zaloznyaya, I. V., and Kozina, L. S. (2015) Molecular markers of oxidative stress in offsprings in experimental hyperhomocysteinemia, Mol. Meditsina, 5, 41–46.

    Google Scholar 

  25. Pustygina, A. V., Milyutina, Yu. P., Zaloznyaya, I. V., and Arutjunyan, A. V. (2015) Indices of oxidative stress in the brain of newborn rats subjected to prenatal hyperhomocys-teinemia, Neurochem. J., 9, 60–65; doi: 10.1134/S1819712415010079.

    Article  CAS  Google Scholar 

  26. Gitto, E., Pellegrino, S., Gitto, P., Barberi, I., and Reiter, R. J. (2009) Oxidative stress of the newborn in the pre- and postnatal period and the clinical utility of melatonin, J. Pineal Res., 46, 128–139; doi: 10.1111/j.1600-079X.2008.00649.x.

    Article  CAS  PubMed  Google Scholar 

  27. Da Cunha, A. A., Ferreira, A. G., Loureiro, S. O., da Cunha, M. J., Schmitz, F., Netto, C. A., and Wyse, A. T. (2012) Chronic hyperhomocysteinemia increases inflammatory markers in hippocampus and serum of rats, Neurochem. Res., 37, 1660–1669; doi: 10.1007/s11064-012-0769-2.

    Article  PubMed  CAS  Google Scholar 

  28. Da Cunha, A. A., Ferreira, A. G., and Wyse, A. T. (2010) Increased inflammatory markers in brain and blood of rats subjected to acute homocysteine administration, Metab. Brain Dis., 25, 199–206; doi: 10.1007/s11011-010-9188-8.

    Article  CAS  PubMed  Google Scholar 

  29. Zanin, R. F., Bergamin, L. S., Morrone, F. B., Coutinho-Silva, R., de Souza Wyse, A. T., and Battastini, A. M. (2015) Pathological concentrations of homocysteine increases IL-1beta production in macrophages in a P2X7, NF-κB, and Erk-dependent manner, Purinergic Signal, 11, 463–470; doi: 10.1007/s11302-015-9464-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, X., Yang, X. Y., He, B. W., Yang, W. J., and Cheng, W. W. (2016) Placental NRP1 and VEGF expression in pre-eclamptic women and in a homocysteine-treated mouse model of pre-eclampsia, Eur. J. Obstet. Gynecol. Reprod. Biol., 196, 69–75; doi: 10.1016/j.ejogrb.2015.11.017.

    Article  CAS  PubMed  Google Scholar 

  31. Bilbo, S. D., and Schwarz, J. M. (2009) Early-life programming of later-life brain and behavior: a critical role for the immune system, Front. Behav. Neurosci., 3; doi: 10.3389/neuro.08.014.2009.

  32. Jakubowski, H. (2004) Molecular basis of homocysteine toxicity in humans, Cell. Mol. Life Sci., 61, 470–487; doi: 10.1007/s00018-003-3204-7.

    Article  CAS  PubMed  Google Scholar 

  33. Smith, S. E., Li, J., Garbett, K., Mirnics, K., and Patterson, P. H. (2007) Maternal immune activation alters fetal brain development through interleukin-6, J. Neurosci., 27, 10695–10702; doi: 10.1523/JNEUROSCI.2178-07. 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jander, S., Schroeter, M., and Stoll, G. (2000) Role of NMDA receptor signaling in the regulation of inflammatory gene expression after focal brain ischemia, J. Neuroimmunol., 109, 181–187; doi: 10.1016/s0165-5728(00)00317-9.

    Article  CAS  PubMed  Google Scholar 

  35. Onufriev, M. V., Freiman, S. V., Moiseeva, Yu. V., Stepanichev, M. Yu., Lazareva, N. A., and Gulyaeva, N. V. (2017) Accumulation of corticosterone and interleukin-1 in the hippocampus after focal ischemic damage of the neocortex: selective vulnerability of the ventral hippocampus, Neurochem. J., 11, 236–241, doi: 10.1134/S1819712417030084.

    Article  CAS  Google Scholar 

  36. Bolton, J. L., and Bilbo, S. D. (2014) Developmental programming of brain and behavior by perinatal diet: focus on inflammatory mechanisms, Dialogues Clin. Neurosci., 16, 307–320.

    PubMed  PubMed Central  Google Scholar 

  37. Gilmore, J. H., Jarskog, L. F., and Vadlamudi, S. (2003) Maternal infection regulates BDNF and NGF expression in fetal and neonatal brain and maternal-fetal unit of the rat, J. Neuroimmunol., 138, 49–55; doi: 10.1016/S0165-5728(03)00095-X.

    Article  CAS  PubMed  Google Scholar 

  38. Gilmore, J. H., Jarskog, L. F., and Vadlamudi, S. (2005) Maternal poly I:C exposure during pregnancy regulates TNFalpha, BDNF, and NGF expression in neonatal brain and the maternal-fetal unit of the rat, J. Neuroimmunol., 159, 106–112; doi: 10.1016/j.jneuroim.2004.10.008.

    Article  CAS  PubMed  Google Scholar 

  39. Hsiao, E. Y., and Patterson, P. H. (2012) Placental regulation of maternal-fetal interactions and brain development, Dev. Neurobiol., 72, 1317–1326; doi: 10.1002/dneu. 22045.

    Article  PubMed  Google Scholar 

  40. Vega, J. A., Garcia-Suarez, O., Hannestad, J., Perez-Perez, M., and Germana, A. (2003) Neurotrophins and the immune system, J. Anat., 203, 1–19; doi: 10.1046/j.1469-7580.2003.00203.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Y., Hodgson, N., Trivedi, M., and Deth, R. (2016) Neuregulin 1 promotes glutathione-dependent neuronal cobalamin metabolism by stimulating cysteine uptake, Oxid. Med. Cell. Longev., 2016, 3849087; doi: 10.1155/2016/3849087.

    PubMed  Google Scholar 

  42. Fock, V., Plessl, K., Draxler, P., Otti, G. R., Fiala, C., Knofler, M., and Pollheimer, J. (2015) Neuregulin-1-mediated ErbB2-ErbB3 signalling protects human tro-phoblasts against apoptosis to preserve differentiation, J. Cell Sci., 128, 4306–4316; doi: 10.1242/jcs.176933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Di Simone, N., Maggiano, N., Caliandro, D., Riccardi, P., Evangelista, A., Carducci, B., and Caruso, A. (2003) Homocysteine induces trophoblast cell death with apopto-tic features, Biol. Reprod., 69, 1129–1134; doi: 10.1095/biolreprod.103.015800.

    Article  PubMed  CAS  Google Scholar 

  44. Kamudhamas, A., Pang, L., Smith, S. D., Sadovsky, Y., and Nelson, D. M. (2004) Homocysteine thiolactone induces apoptosis in cultured human trophoblasts: a mechanism for homocysteine-mediated placental dysfunction? Am. J. Obstet. Gynecol., 191, 563–571; doi: 10.1016/j.ajog.2004. 01.037.

    Article  CAS  PubMed  Google Scholar 

  45. Fujita, K., Tatsumi, K., Kondoh, E., Chigusa, Y., Mogami, H., Fujii, T., Yura, S., Kakui, K., and Konishi, I. (2011) Differential expression and the anti-apoptotic effect of human placental neurotrophins and their receptors, Placenta, 32, 737–744; doi: 10.1016/j.placenta.2011. 07.001.

    Article  CAS  PubMed  Google Scholar 

  46. Yang, B., Ren, Q., Zhang, J. C., Chen, Q. X., and Hashimoto, K. (2017) Altered expression of BDNF, BDNF pro-peptide and their precursor proBDNF in brain and liver tissues from psychiatric disorders: rethinking the brain-liver axis, Transl. Psychiatry, 7, e1128; doi: 10.1038/tp.2017.95.

    Article  CAS  Google Scholar 

  47. Hashimoto, K. (2016) Regulation of brain-derived neurotrophic factor (BDNFßand its precursor proBDNF in the brain by serotonin, Eur. Arch. Psychiatry Clin. Neurosci., 266, 195–197; doi: 10.1007/s00406-016-0682-9.

    Article  PubMed  Google Scholar 

  48. Zeltser, L. M., and Leibel, R. L. (2011) Roles of the placenta in fetal brain development, Proc. Natl. Acad. Sci. USA, 108, 15667–15668; doi: 10.1073/pnas.1112239108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Saenen, N. D., Plusquin, M., Bijnens, E., Janssen, B. G., Gyselaers, W., Cox, B., Fierens, F., Molenberghs, G., Penders, J., Vrijens, K., De Boever, P., and Nawrot, T. S. (2015) In utero fine particle air pollution and placental expression of genes in the brain-derived neurotrophic factor signaling pathway: an environage birth cohort study, Environ. Health Perspect., 123, 834–840; doi: 10.1289/ehp.1408549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dincheva, I., Lynch, N. B., and Lee, F. S. (2016) The role of BDNF in the development of fear learning, Depress. Anxiety, 33, 907–916; doi: 10.1002/da.22497.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gerenu, G., Martisova, E., Ferrero, H., Carracedo, M., Rantamaki, T., Ramirez, M. J., and Gil-Bea, F. J. (2017) Modulation of BDNF cleavage by plasminogen-activator inhibitor-1 contributes to Alzheimer’s neuropathology and cognitive deficits, Biochim. Biophys. Acta Mol. Basis Dis., 1863, 991–1001; doi: 10.1016/j.bbadis.2017.01.023.

    Article  CAS  PubMed  Google Scholar 

  52. Sasi, M., Vignoli, B., Canossa, M., and Blum, R. (2017) Neurobiology of local and intercellular BDNF signaling, Pflugers Arch., 469, 593–610; doi: 10.1007/s00424-017-1964-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Menshanov, P. N., Lanshakov, D. A., and Dygalo, N. N. (2015) ProBDNF is a major product of bdnf gene expressed in the perinatal rat cortex, Physiol. Res., 64, 925–934.

    CAS  PubMed  Google Scholar 

  54. Patz, S., and Wahle, P. (2004) Neurotrophins induce short-term and long-term changes of cortical neurotrophin expression, Eur. J. Neurosci., 20, 701–708; doi: 10.1111/j.1460-9568.2004.03519.x.

    Article  PubMed  Google Scholar 

  55. Foltran, R. B., and Diaz, S. L. (2016) BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J. Neurochem., 138, 204–221; doi: 10.1111/jnc.13658.

    Article  CAS  PubMed  Google Scholar 

  56. Kowianski, P., Lietzau, G., Czuba, E., Waskow, M., Steliga, A., and Morys, J. (2018) BDNF: a key factor with multipotent impact on brain signaling and synaptic plasticity, Cell. Mol. Neurobiol., 38, 579–593; doi: 10.1007/s10571-017-0510-4.

    Article  CAS  PubMed  Google Scholar 

  57. Mizui, T., Ishikawa, Y., Kumanogoh, H., and Kojima, M. (2016) Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: multi-ligand model of growth factor signaling, Pharmacol. Res., 105, 93–98; doi: 10.1016/j.phrs.2015.12.019.

    Article  CAS  PubMed  Google Scholar 

  58. Garcia, K. L., Yu, G., Nicolini, C., Michalski, B., Garzon, D. J., Chiu, V. S., Tongiorgi, E., Szatmari, P., and Fahnestock, M. (2012) Altered balance of proteolytic iso-forms of pro-brain-derived neurotrophic factor in autism, J. Neuropathol. Exp. Neurol., 71, 289–297; doi: 10.1097/NEN.0b013e31824b27e4.

    Article  CAS  PubMed  Google Scholar 

  59. Mizui, T., Hattori, K., Ishiwata, S., Hidese, S., Yoshida, S., Kunugi, H., and Kojima, M. (2019) Cerebrospinal fluid BDNF pro-peptide levels in major depressive disorder and schizophrenia, J. Psychiatr. Res., 113, 190–198; doi: 10.1016/j.jpsychires.2019.03.024.

    Article  PubMed  Google Scholar 

  60. Sahay, A. S., Jadhav, A. T., Sundrani, D. P., Wagh, G. N., and Joshi, S. R. (2019) Differential expression of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in different regions of normal and preeclampsia placentae, Clin. Exp. Hypertens., 14, 1–5; doi: 10.1080/10641963.2019.1665677.

    Article  CAS  Google Scholar 

  61. Xiong, J., Zhou, L., Yang, M., Lim, Y., Zhu, Y. H., Fu, D. L., Li, Z. W., Zhong, J. H., Xiao, Z. C., and Zhou, X. F. (2013) ProBDNF and its receptors are upregulated in glioma and inhibit the growth of glioma cells in vitro, Neuro. Oncol., 15, 990–1007; doi: 10.1093/neuonc/not039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barcelona, P. F., and Saragovi, H. U. (2015) A pro-nerve growth factor (proNGF) and NGF binding protein, alpha2-macroglobulin, differentially regulates p75 and TrkA receptors and is relevant to neurodegeneration ex vivo and in vivo, Mol. Cell. Biol., 35, 3396–3408; doi: 10.1128/MCB.00544-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Budni, J., Bellettini-Santos, T., Mina, F., Garcez, M. L., and Zugno, A. I. (2015) The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease, Aging Dis., 6, 331–341; doi: 10.14336/AD.2015.0825.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Lebrun-Julien, F., Bertrand, M. J., De Backer, O., Stellwagen, D., Morales, C. R., Di Polo, A., and Barker, P. A. (2010) ProNGF induces TNFalpha-dependent death of retinal ganglion cells through a p75NTR non-cell-autonomous signaling pathway, Proc. Natl. Acad. Sci. USA, 107, 3817–3822; doi: 10.1073/pnas.0909276107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fahnestock, M., Michalski, B., Xu, B., and Coughlin, M. D. (2001) The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer’s disease, Mol. Cell. Neurosci., 18, 210–220; doi: 10.1006/mcne.2001.1016.

    Article  CAS  PubMed  Google Scholar 

  66. Sahay, A. S., Sundrani, D. P., Wagh, G. N., Mehendale, S. S., and Joshi, S. R. (2015) Neurotrophin levels in different regions of the placenta and their association with birth outcome and blood pressure, Placenta, 36, 938–943; doi: 10.1016/j.placenta.2015.06.006.

    Article  CAS  PubMed  Google Scholar 

  67. Kim, K. C., Friso, S., and Choi, S. W. (2009) DNA methy-lation, an epigenetic mechanism connecting folate to healthy embryonic development and aging, J. Nutr. Biochem., 20, 917–926; doi: 10.1016/j.jnutbio.2009.06.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kulkarni, A., Dangat, K., Kale, A., Sable, P., Chavan-Gautam, P., and Joshi, S. (2011) Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats, PLoS One, 6, e17706; doi: 10.1371/journal.pone.0017706.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project 18-015-00099) and by the State Budget Project no. AAAA-A19-119021290116-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Arutjunyan.

Ethics declarations

Ethical approval. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Russian Text © The Author(s), 2020, published in Biokhimiya, 2020, Vol. 85, No. 2, pp. 248-259.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM19-137, December 16, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arutjunyan, A.V., Milyutina, Y.P., Shcherbitskaia, A.D. et al. Neurotrophins of the Fetal Brain and Placenta in Prenatal Hyperhomocysteinemia. Biochemistry Moscow 85, 213–223 (2020). https://doi.org/10.1134/S000629792002008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792002008X

Keywords

Navigation