Skip to main content
Log in

Homocysteine is transported by the microvillous plasma membrane of human placenta

  • Homocysteine and B-Vitamin Metabolism
  • Published:
Journal of Inherited Metabolic Disease

Abstract

Elevated maternal plasma concentrations of homocysteine (Hcy) are associated with pregnancy complications and adverse neonatal outcomes. The postulate that we wish to advance here is that placental transport of Hcy, by competing with endogenous amino acids for transporter activity, may account for some of the damaging impacts of Hcy on placental metabolism and function as well as fetal development. In this article, we provide an overview of some recent studies characterising the transport mechanisms for Hcy across the microvillous plasma membrane (MVM) of the syncytiotrophoblast, the transporting epithelium of human placenta. Three Hcy transport systems have been identified, systems L, A and y+L. This was accomplished using a strategy of competitive inhibition to investigate the effects of Hcy on the uptake of well-characterised radiolabelled substrates for each transport system into isolated MVM vesicles. The reverse experiments were also performed, examining the effects of model substrates on [35S]L-Hcy uptake. This article describes the evidence for systems L, A and y+L involvement in placental Hcy transport and discusses the physiological implications of these findings with respect to placental function and fetal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BCH:

2-aminobicyclo[2.2.1]heptane-2-carboxylic acid

BM:

Basal plasma membrane

FGR:

Fetal growth restriction

Hcy:

Homocysteine

HHcy:

Hyperhomocysteinemia

MeAIB:

α-(methylamino)isobutyric acid

MVM:

Microvillous plasma membrane

SNAT:

Sodium-coupled neutral amino acid transporter

tHcy:

Total Hcy

References

  • Ayuk PT, Sibley CP, Donnai P et al (2000) Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am J Physiol Cell Physiol 278:C1162–C1171

    CAS  PubMed  Google Scholar 

  • Bodoy S, Martin L, Zorzano A et al (2005) Identification of LAT4, a novel amino acid transporter with system L activity. J Biol Chem 280:12002–12011

    Article  CAS  PubMed  Google Scholar 

  • Bröer A, Wagner CA, Lang F et al (2000) The heterodimeric amino acid transporter 4F2hc/y+LAT2 mediates arginine efflux in exchange with glutamine. Biochem J 349:787–795

    PubMed  Google Scholar 

  • Brunini TM, Yaqoob MM, Novaes Malagris LE et al (2003) Increased nitric oxide synthesis in uraemic platelets is dependent on L-arginine transport via system y(+)L. Pflugers Arch 445:547–550

    CAS  PubMed  Google Scholar 

  • Büdy B, O'Neill R, DiBello PM et al (2006) Homocysteine transport by human aortic endothelial cells: identification and properties of import systems. Arch Biochem Biophys 446:119–130

    Article  PubMed  Google Scholar 

  • Chien PF, Smith K, Watt PW et al (1993) Protein turnover in the human fetus studied at term using stable isotope tracer amino acids. Am J Physiol 265:E31–E35

    CAS  PubMed  Google Scholar 

  • Cleal JK, Lewis RM (2008) The mechanisms and regulation of placental amino acid transport to the human foetus. J Neuroendocrinol 20:419–426

    Article  CAS  PubMed  Google Scholar 

  • Cleal JK, Brownbill P, Godfrey KM et al (2007) Modification of fetal plasma amino acid composition by placental amino acid exchangers in vitro. J Physiol 582:871–882

    Article  CAS  PubMed  Google Scholar 

  • de la Calle M, Usandizaga R, Sancha M et al (2003) Homocysteine, folic acid and B-group vitamins in obstetrics and gynaecology. Eur J Obstet Gynecol Reprod Biol 107:125–134

    Article  PubMed  Google Scholar 

  • Dean W, Lucifero D, Santos F (2005) DNA methylation in mammalian development and disease. Birth Defects Res C Embryo Today 75:98–111

    Article  CAS  PubMed  Google Scholar 

  • Desforges M, Lacey HA, Glazier JD et al (2006) SNAT4 isoform of system A amino acid transporter is expressed in human placenta. Am J Physiol Cell Physiol 290:C305–C312

    Article  CAS  PubMed  Google Scholar 

  • Desforges M, Mynett KJ, Jones RL et al (2009) The SNAT4 isoform of the system A amino acid transporter is functional in human placental microvillous plasma membrane. J Physiol 587:61–72

    Article  CAS  PubMed  Google Scholar 

  • Devés R, Boyd CA (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545

    PubMed  Google Scholar 

  • Devés R, Angelo S, Rojas AM (1998) System y+L: the broad scope and cation modulated amino acid transporter. Exp Physiol 83:211–220

    PubMed  Google Scholar 

  • Di Simone N, Maggiano N, Caliandro D et al (2003) Homocysteine induces trophoblast cell death with apoptotic features. Biol Reprod 69:1129–1134

    Article  PubMed  Google Scholar 

  • Di Simone N, Riccardi P, Maggiano N et al (2004) Effect of folic acid on homocysteine-induced trophoblast apoptosis. Mol Hum Reprod 10:665–669

    Article  PubMed  Google Scholar 

  • Dye JF, Vause S, Johnston T et al (2004) Characterization of cationic amino acid transporters and expression of endothelial nitric oxide synthase in human placental microvascular endothelial cells. FASEB J 18:125–127

    CAS  PubMed  Google Scholar 

  • Escudero C, Sobrevia L (2008) A hypothesis for preeclampsia: adenosine and inducible nitric oxide synthase in human placental microvascular endothelium. Placenta 29:469–483

    Article  CAS  PubMed  Google Scholar 

  • Ewadh MJ, Tudball N, Rose FA (1990) Homocysteine uptake by human umbilical vein endothelial cells in culture. Biochim Biophys Acta 1054:263–266

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):S40–S44

    Article  CAS  PubMed  Google Scholar 

  • Firth JA, Leach L (1996) Not trophoblast alone: a review of the contribution of the fetal microvasculature to transplacental exchange. Placenta 17:89–96

    Article  CAS  PubMed  Google Scholar 

  • Ganapathy ME, Leibach FH, Mahesh VB et al (1986) Characterization of tryptophan transport in human placental brush-border membrane vesicles. Biochem J 238:201–208

    CAS  PubMed  Google Scholar 

  • Gaull G, Sturman JA, Raiha NC (1972) Development of mammalian sulfur metabolism: absence of cystathionase in human fetal tissues. Pediatr Res 6:538–547

    Article  CAS  PubMed  Google Scholar 

  • Glazier JD, Sibley CP (2006) In vitro methods for studying human placental amino acid transport: placental plasma membrane vesicles. Meth Mol Med 122:241–252

    CAS  Google Scholar 

  • Glazier JD, Jones CJ, Sibley CP (1988) Purification and Na+ uptake by human placental microvillus membrane vesicles prepared by three different methods. Biochim Biophys Acta 945:127–134

    Article  CAS  PubMed  Google Scholar 

  • Greenwood SL, Sibley CP (2006) In vitro methods for studying human placental amino acid transport placental villous fragments. Meth Mol Med 122:253–264

    CAS  Google Scholar 

  • Greenwood SL, Clarson LH, Sides MK et al (1996) Membrane potential difference and intracellular cation concentrations in human placental trophoblast cells in culture. J Physiol 492:629–640

    CAS  PubMed  Google Scholar 

  • Hatanaka T, Huang W, Wang H et al (2000) Primary structure, functional characteristics and tissue expression pattern of human ATA2, a subtype of amino acid transport system A. Biochim Biophys Acta 1467:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hatanaka T, Huang W, Ling R et al (2001) Evidence for the transport of neutral as well as cationic amino acids by ATA3, a novel and liver-specific subtype of amino acid transport system A. Biochim Biophys Acta 1510:10–17

    Article  CAS  PubMed  Google Scholar 

  • Holmes VA (2003) Changes in haemostasis during normal pregnancy: does homocysteine play a role in maintaining homeostasis? Proc Nutr Soc 62:479–493

    Article  CAS  PubMed  Google Scholar 

  • Hultberg B (2004) Extracellular concentration of homocysteine in human cell lines is influenced by specific inhibitors of cyst(e)ine transport. Clin Chem Lab Med 42:378–383

    Article  CAS  PubMed  Google Scholar 

  • Jansson T (2001) Amino acid transporters in the human placenta. Pediatr Res 49:141–147

    Article  CAS  PubMed  Google Scholar 

  • Jansson T (2009) Novel mechanism causing restricted fetal growth: does maternal homocysteine impair placental amino acid transport? J Physiol 587:4123

    Article  CAS  PubMed  Google Scholar 

  • Jansson T, Powell TL (2007) Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci (Lond) 113:1–13

    Article  CAS  Google Scholar 

  • Jansson T, Ylven K, Wennergren M et al (2002) Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta 23:392–399

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Yang F, Brailoiu E et al (2007) Differential regulation of homocysteine transport in vascular endothelial and smooth muscle cells. Arterioscler Thromb Vasc Biol 27:1976–1983

    Article  CAS  PubMed  Google Scholar 

  • Johnson LW, Smith CH (1988) Neutral amino acid transport systems of microvillous membrane of human placenta. Am J Physiol 254:C773–C780

    CAS  PubMed  Google Scholar 

  • Kanai Y, Segawa H, Miyamoto K et al (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632

    Article  CAS  PubMed  Google Scholar 

  • Keating E, Goncalves P, Campos I et al (2009) Folic acid uptake by the human syncytiotrophoblast: interference by pharmacotherapy, drugs of abuse and pathological conditions. Reprod Toxicol 28:511–520

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Hong K, Lee JH et al (2009) Effect of folate deficiency on placental DNA methylation in hyperhomocysteinemic rats. J Nutr Biochem 20:172–176

    Article  CAS  PubMed  Google Scholar 

  • Kudo Y, Boyd CA (2001) Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J Physiol 531:405–416

    Article  CAS  PubMed  Google Scholar 

  • Leoncini G, Pascale R, Signorello MG (2003) Effects of homocysteine on l-arginine transport and nitric oxide formation in human platelets. Eur J Clin Investig 33:713–719

    Article  CAS  Google Scholar 

  • Lewis RM, Glazier J, Greenwood SL et al (2007) L-serine uptake by human placental microvillous membrane vesicles. Placenta 28:445–452

    Article  CAS  PubMed  Google Scholar 

  • Limpach A, Dalton M, Miles R et al (2000) Homocysteine inhibits retinoic acid synthesis: a mechanism for homocysteine-induced congenital defects. Exp Cell Res 260:166–174

    Article  CAS  PubMed  Google Scholar 

  • Mackenzie B, Erickson JD (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447:784–795

    Article  CAS  PubMed  Google Scholar 

  • Mahendran D, Donnai P, Glazier JD et al (1993) Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. Pediatr Res 34:661–665

    CAS  PubMed  Google Scholar 

  • Malinow MR, Rajkovic A, Duell PB et al (1998) The relationship between maternal and neonatal umbilical cord plasma homocyst(e)ine suggests a potential role for maternal homocyst(e)ine in fetal metabolism. Am J Obstet Gynecol 178:228–233

    Article  CAS  PubMed  Google Scholar 

  • Meier C, Ristic Z, Klauser S et al (2002) Activation of system L heterodimeric amino acid exchangers by intracellular substrates. EMBO J 21:580–589

    Article  CAS  PubMed  Google Scholar 

  • Molloy AM, Mills JL, McPartlin J et al (2002) Maternal and fetal plasma homocysteine concentrations at birth: the influence of folate, vitamin B12, and the 5, 10-methylenetetrahydrofolate reductase 677C-->T variant. Am J Obstet Gynecol 186:499–503

    Article  CAS  PubMed  Google Scholar 

  • MRC Vitamin Study Research Group (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338:131–137

    Article  Google Scholar 

  • Murphy MM, Scott JM, McPartlin JM et al (2002) The pregnancy-related decrease in fasting plasma homocysteine is not explained by folic acid supplementation, hemodilution, or a decrease in albumin in a longitudinal study. Am J Clin Nutr 76:614–619

    CAS  PubMed  Google Scholar 

  • Murphy MM, Scott JM, Arija V et al (2004) Maternal homocysteine before conception and throughout pregnancy predicts fetal homocysteine and birth weight. Clin Chem 50:1406–1412

    Article  CAS  PubMed  Google Scholar 

  • Mutus B, Rabini RA, Staffolani R et al (2001) Homocysteine-induced inhibition of nitric oxide production in platelets: a study on healthy and diabetic subjects. Diabetologia 44:979–982

    Article  CAS  PubMed  Google Scholar 

  • Naggar H, Fei YJ, Ganapathy V et al (2003) Regulation of reduced-folate transporter-1 (RFT-1) by homocysteine and identity of transport systems for homocysteine uptake in retinal pigment epithelial (RPE) cells. Exp Eye Res 77:687–697

    Article  CAS  PubMed  Google Scholar 

  • Okamoto Y, Sakata M, Ogura K et al (2002) Expression and regulation of 4F2hc and hLAT1 in human trophoblasts. Am J Physiol Cell Physiol 282:C196–C204

    CAS  PubMed  Google Scholar 

  • Pfeiffer R, Rossier G, Spindler B et al (1999) Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 18:49–57

    Article  CAS  PubMed  Google Scholar 

  • Pickell L, Li D, Brown K et al (2009) Methylenetetrahydrofolate reductase deficiency and low dietary folate increase embryonic delay and placental abnormalities in mice. Birth Defects Res A Clin Mol Teratol 85:531–541

    Article  CAS  PubMed  Google Scholar 

  • Pineda M, Fernandez E, Torrents D et al (1999) Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem 274:19738–19744

    Article  CAS  PubMed  Google Scholar 

  • Ray JG, Laskin CA (1999) Folic acid and homocyst(e)ine metabolic defects and the risk of placental abruption, pre-eclampsia and spontaneous pregnancy loss: a systematic review. Placenta 20:519–529

    Article  CAS  PubMed  Google Scholar 

  • Refsum H (2001) Folate, vitamin B12 and homocysteine in relation to birth defects and pregnancy outcome. Br J Nutr 85(Suppl 2):S109–S113

    Article  CAS  PubMed  Google Scholar 

  • Refsum H, Ueland PM, Nygard O et al (1998) Homocysteine and cardiovascular disease. Annu Rev Med 49:31–62

    Article  CAS  PubMed  Google Scholar 

  • Rossier G, Meier C, Bauch C et al (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274:34948–34954

    Article  CAS  PubMed  Google Scholar 

  • Selhub J (1999) Homocysteine metabolism. Annu Rev Nutr 19:217–246

    Article  CAS  PubMed  Google Scholar 

  • Sibley CP (2009) Understanding placental nutrient transfer—why bother? New biomarkers of fetal growth. J Physiol 587:3431–3440

    Article  CAS  PubMed  Google Scholar 

  • Sladek SM, Magness RR, Conrad KP (1997) Nitric oxide and pregnancy. Am J Physiol 272:R441–R463

    CAS  PubMed  Google Scholar 

  • Solanky N, Requena Jimenez A, D'Souza SW et al (2010) Expression of folate transporters in human placenta and implications for homocysteine metabolism. Placenta 31:134–143

    Article  CAS  PubMed  Google Scholar 

  • Speake PF, Glazier JD, Ayuk PT et al (2003) L-Arginine transport across the basal plasma membrane of the syncytiotrophoblast of the human placenta from normal and preeclamptic pregnancies. J Clin Endocrinol Metab 88:4287–4292

    Article  CAS  PubMed  Google Scholar 

  • Swanson DA, Liu ML, Baker PJ et al (2001) Targeted disruption of the methionine synthase gene in mice. Mol Cell Biol 21:1058–1065

    Article  CAS  PubMed  Google Scholar 

  • Tsitsiou E, Greenwood SL, Sibley CP et al (2008) Homocysteine inhibition of system A amino acid transporter activity in human placenta. Reprod Sci 15:91A

    Article  Google Scholar 

  • Tsitsiou E, Sibley CP, D'Souza SW et al (2009) Homocysteine transport by systems L, A and y+L across the microvillous plasma membrane of human placenta. J Physiol 587:4001–4013

    Article  CAS  PubMed  Google Scholar 

  • Upchurch GR Jr, Welch GN, Fabian AJ et al (1997) Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 272:17012–17017

    Article  CAS  PubMed  Google Scholar 

  • Verrey F (2003) System L: heteromeric exchangers of large, neutral amino acids involved in directional transport. Pflugers Arch 445:529–533

    CAS  PubMed  Google Scholar 

  • Vollset SE, Refsum H, Irgens LM et al (2000) Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: the Hordaland Homocysteine study. Am J Clin Nutr 71:962–968

    CAS  PubMed  Google Scholar 

  • Wang H, Huang W, Sugawara M et al (2000) Cloning and functional expression of ATA1, a subtype of amino acid transporter A, from human placenta. Biochem Biophys Res Commun 273:1175–1179

    Article  CAS  PubMed  Google Scholar 

  • Yajnik CS, Deshpande SS, Panchanadikar AV et al (2005) Maternal total homocysteine concentration and neonatal size in India. Asia Pac J Clin Nutr 14:179–181

    CAS  PubMed  Google Scholar 

  • Yasuda S, Hasui S, Yamamoto C et al (2008) Placental folate transport during pregnancy. Biosci Biotechnol Biochem 72:2277–2284

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work described in this article was supported by the Medical Research Council (MRC) (G0500647; J.D.G., S.W.D’S., C.P.S.) and a MRC Doctoral Training Studentship (E.T.). This work was also supported by Grant HL52234 from the National Heart, Lung and Blood Institute of the National Institutes of Health (D.W.J.). The Maternal and Fetal Health Research Group is supported by the Manchester NIHR Biomedical Research Centre. We would like to acknowledge that Professor Jonathan Clayden and Mr Lee Mullen (Department of Chemistry, University of Manchester) synthesised the L-Hcy used in our studies, and we extend our grateful thanks to them. We are also grateful to Dr Carolyn Jones for providing the electron micrograph of the placental barrier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn D. Glazier.

Additional information

Communicated by: Henk Blom

Competing interest: None declared.

Conflict of interests: None to declare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsitsiou, E., Sibley, C.P., D’Souza, S.W. et al. Homocysteine is transported by the microvillous plasma membrane of human placenta. J Inherit Metab Dis 34, 57–65 (2011). https://doi.org/10.1007/s10545-010-9141-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-010-9141-3

Keywords

Navigation