Skip to main content

Effects of Malnutrition on Brain Development

  • Chapter
  • First Online:
Nutrition and Psychiatric Disorders

Part of the book series: Nutritional Neurosciences ((NN))

Abstract

One of the most significant variables that can hinder the development of the brain is malnutrition. Malnutrition can lead to aberrant growth and behavioral issues. Brain growth, synapse formation, and cell differentiation are all impacted by nutritional deficiencies. A diet deficient in protein during pregnancy is associated with alterations in the neurotransmitters as well as the oxidative state of the brain. As a result, psychosocial problems emerge in childhood that last throughout adulthood. Understanding the deleterious effects of a nutrition deficiency on brain function requires an understanding of the length and commencement of dietary requirements. Many concerns remain unanswered about the long-term implications of prenatal starvation, even after decades of research. Since children’s neurological systems are still developing, they are more vulnerable to the consequences of nutritional inadequacies than adults’ brains. Some of the impacts of caloric deficiency [including in some cases protein-calorie malnutrition (PCM), and a lesser degree of essential fatty acid (EFA) deficit] on some indices of brain damage, behavioral change, and intellect (IQ tests) have been studied in the context of the war years in Europe and the emergence of famine circumstances in other nations. Research on the impact of malnutrition on the developing brain can be broken down into two categories: studies that focus on physical and clinical brain growth and maturation, and studies that focus on the development of “brain function,” which includes neurological, psychomotor, and intellectual development. This chapter explores the effects of a lack of nutrients on the neurodevelopment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamy M, Bengelloun WA (2012) Malnutrition and brain development: an analysis of the effects of inadequate diet during different stages of life in rat. Neurosci Biobehav Rev 36(6):1463–1480

    Article  CAS  PubMed  Google Scholar 

  • Andersson M, Karumbunathan V, Zimmermann MB (2012) Global iodine status in 2011 and trends over the past decade. J Nutr 142(4):744–750

    Article  CAS  PubMed  Google Scholar 

  • Arterburn LM, Hall EB, Oken H (2006) Distribution, interconversion, and dose response of n − 3 fatty acids in humans. Am J Clin Nutr 83(6):1467S–1476S

    Article  CAS  PubMed  Google Scholar 

  • Ball GFM (1998) Vitamin B 12. In: Bioavailability and analysis of vitamins in foods. Springer, Boston, MA, pp 497–515

    Chapter  Google Scholar 

  • Baquer NZ, Hothersall JS, McLean P, Greenbaum AL (1977) Aspects of carbohydrate metabolism in developing brain. Dev Med Child Neurol 19(1):81–104. https://doi.org/10.1111/j.1469-8749.1977.tb08027.x

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Grecksch G (2006) Pharmacological treatment to augment hole board habituation in prenatal Vitamin D-deficient rats. Behav Brain Res 166:177–183

    Article  CAS  PubMed  Google Scholar 

  • Benton D (2008) Micronutrient status, cognition and behavioral problems in childhood. Eur J Nutr 47(3):38–50

    Article  CAS  PubMed  Google Scholar 

  • Berger PK, Plows JF, Demerath EW, Fields DA (2020) Carbohydrate composition in breast milk and its effect on infant health. Curr Opin Clin Nutr Metab Care 23(4):277–281. https://doi.org/10.1097/MCO.0000000000000658

    Article  PubMed  PubMed Central  Google Scholar 

  • Black MM (2008) Effects of vitamin B12 and folate deficiency on brain development in children. Food Nutr Bull 29(2_suppl1):S126–S131

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonatto F, Polydoro M, Andrades MÉ, da Frota Júnior MLC, Dal-Pizzol F, Rotta LN et al (2005) Effect of protein malnutrition on redox state of the hippocampus of rat. Brain Res 1042(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Bonatto F, Polydoro M, Andrades MÉ, da Frota Júnior MLC, Dal-Pizzol F, Rotta LN et al (2006) Effects of maternal protein malnutrition on oxidative markers in the young rat cortex and cerebellum. Neurosci Lett 406(3):281–284

    Article  CAS  PubMed  Google Scholar 

  • Bourre JM (2006) Effects of nutrients (in food) on the structure and function of the nervous system: update on dietary requirements for brain. Part 1: micronutrients. J Nutr Health Aging 10(5):377

    CAS  PubMed  Google Scholar 

  • Bousselamti A, El Hasbaoui B, Echahdi H, Krouile Y (2018) Psychomotor regression due to vitamin B12 deficiency. Pan Afr Med J 30:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown J, Bianco JI, McGrath JJ, Eyles DW (2003) 1,25-Dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 343:139–143

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2014) Very long chain omega-3 (n-3) fatty acids and human health. Eur J Lipid Sci Technol 116(10):1280–1300

    Article  CAS  Google Scholar 

  • Carlson SJ, O’Loughlin AA, Anez-Bustillos L, Baker MA, Andrews NA, Gunner G et al (2019) A diet with docosahexaenoic and arachidonic acids as the sole source of polyunsaturated fatty acids is sufficient to support visual, cognitive, motor, and social development in mice. Front Neurosci 72

    Google Scholar 

  • Chase HP, Dorsey J, McKhann GM (1967) The effect of malnutrition on the synthesis of a myelin lipid. Pediatrics 40(4):551–559

    Article  CAS  PubMed  Google Scholar 

  • Chertoff M (2015) Protein malnutrition and brain development. Brain Disord Ther 4(3):171

    Article  Google Scholar 

  • Chouinard G, Beauclair L, Geiser R, Etienne P (1990) A pilot study of magnesium aspartate hydrochloride (Magnesiocard) as a mood stabilizer for rapid cycling bipolar affective disorder patients. Prog Neuropsychopharmacol Biol Psychiatry 14:171–180

    Article  CAS  PubMed  Google Scholar 

  • Clandinin MT (1999) Brain development and assessing the supply of polyunsaturated fatty acid. Lipids 34(2):131–137

    Article  CAS  PubMed  Google Scholar 

  • Courchesne E, Carper R, Akshoomoff N (2003) Evidence of brain overgrowth in the first year of life in autism. JAMA 290(3):337–344

    Article  PubMed  Google Scholar 

  • Crawford MA (1993) The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr 57(5):703S–710S

    Article  CAS  PubMed  Google Scholar 

  • Crawford MA, Wang Y, Marsh DE, Johnson MR, Ogundipe E, Ibrahim A et al (2022) Neurodevelopment, Nutrition and Genetics. A contemporary retrospective on neurocognitive health on the occasion of the 100th anniversary of the National Institute of Nutrition, Hyderabad, India. Prostaglandins Leukot Essent Fat Acids 180:102427

    Article  CAS  Google Scholar 

  • Davies G, Welham J, Chant D, Torrey EF, McGrath J (2003) A systematic review and meta-analysis of Northern Hemisphere season of birth studies in schizophrenia. Schizophr Bull 29:587–593

    Article  PubMed  Google Scholar 

  • Dhopeshwarkar GA, Mead JF (1973) Uptake and transport of fatty acids into the brain and the role of the blood–brain barrier system. Adv Lipid Res 11:109–142

    Article  CAS  PubMed  Google Scholar 

  • Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99(1):949–1045. https://doi.org/10.1152/physrev.00062.2017

    Article  CAS  PubMed  Google Scholar 

  • Dobbing JOHN (1964) The influence of early nutrition on the development and myelination of the brain. Proc R Soc Lond B Biol Sci 159(976):503–509

    Article  CAS  PubMed  Google Scholar 

  • Dobbing J (1990) Vulnerable periods in developing brain. In: Brain, behaviour, and iron in the infant diet. Springer, London, pp 1–17

    Chapter  Google Scholar 

  • Duran P, Cintra L, Galler JR, Tonkiss J (2005) Prenatal protein malnutrition induces a phase shift advance of the spontaneous locomotor rhythm and alters the rest/activity ratio in adult rats. Nutr Neurosci 8(3):167–117

    Article  CAS  PubMed  Google Scholar 

  • Feoli AM, Siqueira IR, Almeida L, Tramontina AC, Vanzella C, Sbaraini S et al (2006) Effects of protein malnutrition on oxidative status in rat brain. Nutrition 22(2):160–165

    Article  CAS  PubMed  Google Scholar 

  • Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16(12):756–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galler JR, Ramsey F, Solimano G (1984) The influence of early malnutrition on subsequent behavioral development III. Learning disabilities as a sequel to malnutrition. Pediatr Res 18(4):309–313

    Article  CAS  PubMed  Google Scholar 

  • Garcion E, Sindji L, Montero-Menei C, Andre C, Brachet P, Darcy F (1998) Expression of inducible nitric oxide synthase during rat brain inflammation: regulation by 1,25-dihydroxyvitamin D3. Glia 22:282–294

    Article  CAS  PubMed  Google Scholar 

  • Garewal G, Narang A, Das KC (1988) Infantile tremor syndrome: a vitamin B12 deficiency syndrome in infants. J Trop Pediatr 34(4):174–178

    Article  CAS  PubMed  Google Scholar 

  • Glaser K, Girschick HJ, Schropp C, Speer CP (2015) Psychomotor development following early treatment of severe infantile vitamin B12 deficiency and West syndrome–is everything fine? A case report and review of literature. Brain Dev 37(3):347–351

    Article  PubMed  Google Scholar 

  • Gould JF, Smithers LG, Makrides M (2013) The effect of maternal omega-3 (n-3) LCPUFA supplementation during pregnancy on early childhood cognitive and visual development: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 97(3):531–544

    Article  CAS  PubMed  Google Scholar 

  • Grayson DS, Kroenke CD, Neuringer M, Fair DA (2014) Dietary omega-3 fatty acids modulate large-scale systems organization in the rhesus macaque brain. J Neurosci 34(6):2065–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green R, Allen LH, Bjørke-Monsen AL, Brito A, Guéant JL, Miller JW et al (2017) Vitamin B12 deficiency. Nat Rev Dis Primers 3(1):1–20

    Google Scholar 

  • Greiner RS, Moriguchi T, Hutton A, Slotnick BM, Salem N Jr (1999) Rats with low levels of brain docosahexaenoic acid show impaired performance in olfactory-based and spatial learning tasks. Lipids 34:S239–S243

    Article  CAS  PubMed  Google Scholar 

  • Guest PC, Urday S, Ma D, Stelzhammer V, Harris LW, Amess B et al (2012) Proteomic analysis of the maternal protein restriction rat model for schizophrenia: identification of translational changes in hormonal signaling pathways and glutamate neurotransmission. Proteomics 12(23–24):3580–3589

    Article  CAS  PubMed  Google Scholar 

  • Haggarty P (2004) Effect of placental function on fatty acid requirements during pregnancy. Eur J Clin Nutr 58(12):1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Halicioglu O, Asik Akman S, Sutcuoglu S, Atabay B, Turker M, Akbay S, Yaprak I (2011) Nutritional B12 deficiency in infants of vitamin B12-deficient mothers. Int J Vitam Nutr Res 81(5):328–334

    Article  PubMed  Google Scholar 

  • Hedman AM, van Haren NE, Schnack HG, Kahn RS, Hulshoff Pol HE (2012) Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33(8):1987–2002

    Article  PubMed  Google Scholar 

  • Heiden A, Frey R, Presslich O, Blasbichler T, Smetana R, Kasper S (1999) Treatment of severe mania with intravenous magnesium sulphate as a supplementary therapy. Psychiatry Res 89:239–246

    Article  CAS  PubMed  Google Scholar 

  • Hornstra G (2000) Essential fatty acids in mothers and their neonates. Am J Clin Nutr 71(5):1262S–1269S

    Article  CAS  PubMed  Google Scholar 

  • Ibi M, Sawada H, Nakanishi M, Kume T, Katsuki H, Kaneko S, Shimohama S, Akaike A (2001) Protective effects of 1 alpha 25-(OH)(2)D-3 against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology 40:761–771

    Article  CAS  PubMed  Google Scholar 

  • Igarashi M, Santos RA, Cohen-Cory S (2015) Impact of maternal n-3 polyunsaturated fatty acid deficiency on dendritic arbor morphology and connectivity of developing Xenopus laevis central neurons in vivo. J Neurosci 35(15):6079–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamieson EC (1998) Human brain lipid fatty acid composition in relation to infant diet. Doctoral dissertation, University of Glasgow

    Google Scholar 

  • Janssen CI, Zerbi V, Mutsaers MP, de Jong BS, Wiesmann M, Arnoldussen IA et al (2015) Impact of dietary n-3 polyunsaturated fatty acids on cognition, motor skills and hippocampal neurogenesis in developing C57BL/6J mice. J Nutr Biochem 26(1):24–35

    Article  CAS  PubMed  Google Scholar 

  • Johnson MH (2003) Development of human brain functions. Biol Psychiatry 54(12):1312–1316

    Article  PubMed  Google Scholar 

  • Kar BR, Rao SL, Chandramouli BA (2008) Cognitive development in children with chronic protein energy malnutrition. Behav Brain Funct 4(1):1–12

    Article  Google Scholar 

  • Kehoe P, Mallinson K, Bronzino J, McCormick CM (2001) Effects of prenatal protein malnutrition and neonatal stress on CNS responsiveness. Dev Brain Res 132(1):23–31

    Article  CAS  Google Scholar 

  • Khong TK, Selvanayagam VS, Sidhu SK, Yusof A (2017) Role of carbohydrate in central fatigue: a systematic review. Scand J Med Sci Sports 27(4):376–384. https://doi.org/10.1111/sms.12754. Epub 2016 Oct 7

    Article  CAS  PubMed  Google Scholar 

  • Kirov GK, Tsachev KN (1990) Magnesium, schizophrenia and manic-depressive disease. Neuropsychobiology 23:79–81

    Article  CAS  PubMed  Google Scholar 

  • Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK et al (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28(47):12176–12182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP (2000) Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development 127(19):4195–4202

    Article  CAS  PubMed  Google Scholar 

  • Landon J, Davison M, Krägeloh CU, Thompson NM, Miles JL, Vickers MH et al (2007) Global undernutrition during gestation influences learning during adult life. Learn Behav 35(2):79–86

    Article  PubMed  Google Scholar 

  • Lauritzen L, Carlson SE (2011) Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status. Matern Child Nutr 7:41–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberman HR, Yeghiayan SK, Maher TJ (2005) A low-protein diet alters rat behavior and neurotransmission in normothermic and hyperthermic environments. Brain Res Bull 66(2):149–154

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Raine A (2011) Malnutrition and externalizing behaviour. In: Lifetime nutritional influences on cognition, behaviour and psychiatric illness. Woodhead Publishing, pp 301–322

    Chapter  Google Scholar 

  • Liu RZ, Mita R, Beaulieu M, Gao Z, Godbout R (2010) Fatty acid binding proteins in brain development and disease. Int J Dev Biol 54(8–9):1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Melina V, Craig W, Levin S (2016) Position of the academy of nutrition and dietetics: vegetarian diets. J Acad Nutr Diet 116(12):1970–1980

    Article  PubMed  Google Scholar 

  • Morgane PJ, Austin-LaFrance R, Bronzino J, Tonkiss J, Diaz-Cintra S, Cintra L et al (1993) Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 17(1):91–128

    Article  CAS  PubMed  Google Scholar 

  • Morgane PJ, Mokler DJ, Galler JR (2002) Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev 26(4):471–483

    Article  CAS  PubMed  Google Scholar 

  • Murrey HE, Hsieh-Wilson LC (2008) The chemical neurobiology of carbohydrates. Chem Rev 108(5):1708–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nettleton JA (1993) Are n-3 fatty acids essential nutrients for fetal and infant development? J Am Diet Assoc 93(1):58–64

    Article  CAS  PubMed  Google Scholar 

  • Neveu I, Naveilhan P, Jehan F, Baudet C, Wion D, De Luca HF, Brachet P (1994) 1,25-Dihydroxyvitamin D3 regulates the synthesis of nerve growth factor in primary cultures of glial cells. Brain Res Mol Brain Res 24:70–76

    Article  CAS  PubMed  Google Scholar 

  • Nowak G, Schlegel-Zawadzka M (1999) Alterations in serum and brain trace element levels after antidepressant treatment: Part I. Zinc. Biol Trace Elem Res 67:85–92

    Article  CAS  PubMed  Google Scholar 

  • Ogundele MO (2018) Behavioural and emotional disorders in childhood: a brief overview for paediatricians. World J Clin Pediatr 7(1):9

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozougwu JC (2017) Physiology of the liver. Int J Res Pharm Biosci 4(8):13–24

    Google Scholar 

  • Phillips F (2005) Vegetarian nutrition. Nutr Bull 30(2):132–167

    Article  Google Scholar 

  • Prado EL, Dewey KG (2014) Nutrition and brain development in early life. Nutr Rev 72(4):267–284

    Article  PubMed  Google Scholar 

  • Prohaska JR, Hoffman RG (1996) Auditory startle response is diminished in rats after recovery from perinatal copper deficiency. J Nutr 126(3):618–627

    Article  CAS  PubMed  Google Scholar 

  • Richardson SA, Birch HG, Grabie E, Yoder K (1972) The behavior of children in school who were severely malnourished in the first two years of life. J Health Soc Behav:276–284

    Google Scholar 

  • Rohner F, Zimmermann M, Jooste P, Pandav C, Caldwell K, Raghavan R, Raiten DJ (2014) Biomarkers of nutrition for development—iodine review. J Nutr 144(8):1322S–1342S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royland J, Klinkhachorn P, Konat G, Wiggins RC (1992) How much undernourishment is required to retard brain myelin development. Neurochem Int 21(2):269–274

    Article  CAS  PubMed  Google Scholar 

  • Rushmore RJ, McGaughy JA, Mokler DJ, Rosene DL (2020) The enduring effect of prenatal protein malnutrition on brain anatomy, physiology and behavior. Nutr Neurosci:1–8

    Google Scholar 

  • Sanders TA (1999) Essential fatty acid requirements of vegetarians in pregnancy, lactation, and infancy. Am J Clin Nutr 70(3):555s–559s

    Article  CAS  PubMed  Google Scholar 

  • Schengrund CL (2015) Gangliosides: glycosphingolipids essential for normal neural development and function. Trends Biochem Sci 40(7):397–406. https://doi.org/10.1016/j.tibs.2015.03.007. Epub 2015 May 1

    Article  CAS  PubMed  Google Scholar 

  • Shankar AH (2020) Mineral deficiencies. In: Hunter’s tropical medicine and emerging infectious diseases. Elsevier, pp 1048–1054

    Chapter  Google Scholar 

  • Shen Q, Li ZQ, Sun Y, Wang T, Wan CL, Li XW et al (2008) The role of pro-inflammatory factors in mediating the effects on the fetus of prenatal undernutrition: implications for schizophrenia. Schizophr Res 99(1–3):48–55

    Article  CAS  PubMed  Google Scholar 

  • Sklar R (1986) Nutritional vitamin B12 deficiency in a breast-fed infant of a vegan-diet mother. Clin Pediatr 25(4):219–221

    Article  CAS  Google Scholar 

  • St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F et al (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA 294(5):557–562

    Article  CAS  PubMed  Google Scholar 

  • Stephen A, Alles M, de Graaf C et al (2012) The role and requirements of digestible dietary carbohydrates in infants and toddlers. Eur J Clin Nutr 66:765–779. https://doi.org/10.1038/ejcn.2012.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stollhoff K, Schulte FJ (1987) Vitamin B12 and brain development. Eur J Pediatr 146(2):201–205

    Article  CAS  PubMed  Google Scholar 

  • Uauy R, Dangour AD (2006) Nutrition in brain development and aging: role of essential fatty acids. Nutr Rev 64(suppl_2):S24–S33

    Article  PubMed  Google Scholar 

  • Venkatramanan S, Armata IE, Strupp BJ, Finkelstein JL (2016) Vitamin B-12 and cognition in children. Adv Nutr 7(5):879–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahl D, Solon-Biet SM, Wang QP, Wali JA, Pulpitel T, Clark X, Raubenheimer D, Senior AM, Sinclair DA, Cooney GJ, de Cabo R, Cogger VC, Simpson SJ, Le Couteur DG (2018) Comparing the effects of low-protein and high-carbohydrate diets and caloric restriction on brain aging in mice. Cell Rep 25(8):2234–2243.e6. https://doi.org/10.1016/j.celrep.2018.10.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Xu RJ (2007) The effects of perinatal protein malnutrition on spatial learning and memory behaviour and brain-derived neurotrophic factor concentration in the brain tissue in young rats. Asia Pac J Clin Nutr 16(Suppl 1):467–472

    CAS  PubMed  Google Scholar 

  • Wang C, Szabo JS, Dykman RA (2004) Effects of a carbohydrate supplement upon resting brain activity. Integr Physiol Behav Sci 39(2):126–138. https://doi.org/10.1007/BF02734278

    Article  PubMed  Google Scholar 

  • Weiser M, Levkowitch Y, Neuman M, Yehuda S (1994) Decrease of serum iron in acutely psychotic schizophrenic patients. Int J Neurosci 78:49–52

    Article  CAS  PubMed  Google Scholar 

  • Winick M (1969) Malnutrition and brain development. J Pediatr 74(5):667–679

    Article  CAS  PubMed  Google Scholar 

  • Winick M (1971) CELLULAR GROWTH DURING EARLY MALNUTRITION: E. Mead Johnson Award Address. Pediatrics 47(6):969–978

    Article  CAS  PubMed  Google Scholar 

  • Winick M (1972) Neurological correlates of malnutrition in animals and man. Nutrition, Growth and Development of North American Indian Children. Department of Health, Education, and Welfare Publication No.(NIH) 72(26):139–150

    Google Scholar 

  • Winick M (1975) Nutrition and brain development. In: Nutrition and mental functions. Springer, Boston, MA, pp 65–73

    Chapter  Google Scholar 

  • Wion D, MacGrogan D, Neveu I, Jehan F, Houlgatte R, Brachet P (1991) 1,25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J Neurosci Res 28:110–114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sethi, P., Prajapati, A., Mishra, T., Chaudhary, T., Kumar, S. (2022). Effects of Malnutrition on Brain Development. In: Mohamed, W., Kobeissy, F. (eds) Nutrition and Psychiatric Disorders. Nutritional Neurosciences. Springer, Singapore. https://doi.org/10.1007/978-981-19-5021-6_4

Download citation

Publish with us

Policies and ethics