Skip to main content
Log in

SRF in Neurochemistry: Overview of Recent Advances in Research on the Nervous System

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Serum response factor (SRF) is a representative transcription factor that plays crucial roles in various biological phenomena by regulating immediate early genes (IEGs) and genes related to cell morphology and motility, among others. Over the years, the signal transduction pathways activating SRF have been clarified and SRF-target genes have been identified. In this overview, we initially briefly summarize the basic biology of SRF and its cofactors, ternary complex factor (TCF) and megakaryoblastic leukemia (MKL)/myocardin-related transcription factor (MRTF). Progress in the generation of nervous system-specific knockout (KO) or genetically modified mice as well as genetic analyses over the last few decades has not only identified novel SRF-target genes but also highlighted the neurochemical importance of SRF and its cofactors. Therefore, here we next present the phenotypes of mice with nervous system-specific KO of SRF or its cofactors by depicting recent findings associated with brain development, plasticity, epilepsy, stress response, and drug addiction, all of which result from function or dysfunction of the SRF axis. Last, we develop a hypothesis regarding the possible involvement of SRF and its cofactors in human neurological disorders including neurodegenerative, psychiatric, and neurodevelopmental diseases. This overview should deepen our understanding, highlight promising future directions for developing novel therapeutic strategies, and lead to illumination of the mechanisms underlying higher brain functions based on neuronal structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AAV:

Adeno-associated virus

AD:

Alzheimer’s disease

ALS:

Amyotrophic sclerosis

Arc:

Activity-regulated cytoskeleton-associated protein

ASD:

Autism spectrum disorder

BDNF:

Brain-derived neurotrophic factor

BSAC:

Basic, SAP, and coiled-coil domain

CaMK:

Calcium/calmodulin-dependent protein kinase

CArG:

CC(AT)6GG

CBP:

CREB-binding protein

Cdk:

Cyclin-dependent kinase

CREB:

cAMP response element-binding protein

CRISPR/Cas:

Clustered regularly interspaced short palindromic repeat/CRISPR-associated

CTGF:

Connective tissue growth factor

DAT:

Dopamine active transporter

D1:

Dopamine D1 receptor

DG:

Dentate gyrus

DRG:

Dorsal root ganglion

EE:

Enriched environment

egr:

Early growth response

Elk:

Ets-like transcription factor

ERP:

Ets-related protein

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFAP:

Glial fibrillary acidic protein

HSV:

Herpes simplex virus

IEG:

Immediate early gene

LTD:

Long-term depression

LTP:

Long-term potentiation

LPA:

Lysophosphatidic acid

MADS:

Minichromosome maintenance 1 protein, agamous, deficiens, and SRF

MKL:

Megakaryoblastic leukemia

MRTF:

Myocardin-related transcription factor

MEF2:

Myocyte enhancer factor 2

NAc:

Nucleus accumbens

Net:

New Ets transcription factor

NEX:

Neuronal helix-loop-helix

NGF:

Nerve growth factor

NPC:

Neural precursor cell

PD:

Parkinson’s disease

RyR:

Ryanodine receptor

SAP:

SRF accessory protein

SARE:

Synaptic activity-responsive element

SNP:

Single-nucleotide polymorphism

SRF:

Serum response factor

SUMO:

Small ubiquitin-like modifier

TCF:

Ternary complex factor

TF:

Transcription factor

TGF-β:

Transforming growth factor-β

VSMC:

Vascular smooth muscle cell

References

  1. Treisman R (1986) Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell 46(4):567–574. https://doi.org/10.1016/0092-8674(86)90882-2

    Article  CAS  PubMed  Google Scholar 

  2. Norman C, Runswick M, Pollock R, Treisman R (1988) Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55(6):989–1003. https://doi.org/10.1016/0092-8674(88)90244-9

    Article  CAS  PubMed  Google Scholar 

  3. Miwa T, Kedes L (1987) Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene. Mol Cell Biol 7(8):2803–2813. https://doi.org/10.1128/mcb.7.8.2803-2813.1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ramanan N, Shen Y, Sarsfield S, Lemberger T, Schütz G, Linden DJ, Ginty DD (2005) SRF mediates activity-induced gene expression and synaptic plasticity but not neuronal viability. Nat Neurosci 8(6):759–767. https://doi.org/10.1038/nn1462

    Article  CAS  PubMed  Google Scholar 

  5. Alberti S, Krause SM, Kretz O, Philippar U, Lemberger T, Casanova E, Wiebel FF, Schwarz H, Frotscher M, Schütz G, Nordheim A (2005) Neuronal migration in the murine rostral migratory stream requires serum response factor. Proc Natl Acad Sci U S A 102(17):6148–6153. https://doi.org/10.1073/pnas.0501191102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Knöll B, Kretz O, Fiedler C, Alberti S, Schütz G, Frotscher M, Nordheim A (2006) Serum response factor controls neuronal circuit assembly in the hippocampus. Nat Neurosci 9(2):195–204. https://doi.org/10.1038/nn1627

    Article  CAS  PubMed  Google Scholar 

  7. Etkin A, Alarcón JM, Weisberg SP, Touzani K, Huang YY, Nordheim A, Kandel ER (2006) A role in learning for SRF: deletion in the adult forebrain disrupts LTD and the formation of an immediate memory of a novel context. Neuron 50(1):127–143. https://doi.org/10.1016/j.neuron.2006.03.013

    Article  CAS  PubMed  Google Scholar 

  8. Wickramasinghe SR, Alvania RS, Ramanan N, Wood JN, Mandai K, Ginty DD (2008) Serum response factor mediates NGF-dependent target innervation by embryonic DRG sensory neurons. Neuron 58(4):532–545. https://doi.org/10.1016/j.neuron.2008.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229(1):1–13

    Article  CAS  Google Scholar 

  10. Pellegrini L, Tan S, Richmond TJ (1995) Structure of serum response factor core bound to DNA. Nature 376(6540):490–498. https://doi.org/10.1038/376490a0

    Article  CAS  PubMed  Google Scholar 

  11. Sharrocks AD, Gille H, Shaw PE (1993) Identification of amino acids essential for DNA binding and dimerization in p67SRF: implications for a novel DNA-binding motif. Mol Cell Biol 13(1):123–132. https://doi.org/10.1128/mcb.13.1.123-132.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu SH, Ma JT, Yueh AY, Lees-Miller SP, Anderson CW, Ng SY (1993) The carboxyl-terminal transactivation domain of human serum response factor contains DNA-activated protein kinase phosphorylation sites. J Biol Chem 268(28):21147–21154

    Article  CAS  Google Scholar 

  13. Kalita K, Kharebava G, Zheng JJ, Hetman M (2006) Role of megakaryoblastic acute leukemia-1 in ERK1/2-dependent stimulation of serum response factor-driven transcription by BDNF or increased synaptic activity. J Neurosci 26(39):10020–10032. https://doi.org/10.1523/jneurosci.2644-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morita T, Mayanagi T, Sobue K (2007) Dual roles of myocardin-related transcription factors in epithelial mesenchymal transition via slug induction and actin remodeling. J Cell Biol 179(5):1027–1042. https://doi.org/10.1083/jcb.200708174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xia Z, Dudek H, Miranti CK, Greenberg ME (1996) Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK-dependent mechanism. J Neurosci 16(17):5425–5436. https://doi.org/10.1523/jneurosci.16-17-05425.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81(7):1159–1170. https://doi.org/10.1016/s0092-8674(05)80020-0

    Article  CAS  PubMed  Google Scholar 

  17. Posern G, Treisman R (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol 16(11):588–596. https://doi.org/10.1016/j.tcb.2006.09.008

    Article  CAS  PubMed  Google Scholar 

  18. Buchwalter G, Gross C, Wasylyk B (2004) Ets ternary complex transcription factors. Gene 324:1–14. https://doi.org/10.1016/j.gene.2003.09.028

    Article  CAS  PubMed  Google Scholar 

  19. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11(5):353–365. https://doi.org/10.1038/nrm2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Besnard A, Galan-Rodriguez B, Vanhoutte P, Caboche J (2011) Elk-1 a transcription factor with multiple facets in the brain. Front Neurosci 5:35. https://doi.org/10.3389/fnins.2011.00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sasazuki T, Sawada T, Sakon S, Kitamura T, Kishi T, Okazaki T, Katano M, Tanaka M, Watanabe M, Yagita H, Okumura K, Nakano H (2002) Identification of a novel transcriptional activator, BSAC, by a functional cloning to inhibit tumor necrosis factor-induced cell death. J Biol Chem 277(32):28853–28860. https://doi.org/10.1074/jbc.m203190200

    Article  CAS  PubMed  Google Scholar 

  22. Wang DZ, Li S, Hockemeyer D, Sutherland L, Wang Z, Schratt G, Richardson JA, Nordheim A, Olson EN (2002) Potentiation of serum response factor activity by a family of myocardin-related transcription factors. Proc Natl Acad Sci USA 99(23):14855–14860. https://doi.org/10.1073/pnas.222561499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cen B, Selvaraj A, Burgess RC, Hitzler JK, Ma Z, Morris SW, Prywes R (2003) Megakaryoblastic leukemia 1, a potent transcriptional coactivator for serum response factor (SRF), is required for serum induction of SRF target genes. Mol Cell Biol 23(18):6597–6608. https://doi.org/10.1128/mcb.23.18.6597-6608.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cen B, Selvaraj A, Prywes R (2004) Myocardin/MKL family of SRF coactivators: key regulators of immediate early and muscle specific gene expression. J Cell Biochem 93(1):74–82. https://doi.org/10.1002/jcb.20199

    Article  CAS  PubMed  Google Scholar 

  25. Selvaraj A, Prywes R (2003) Megakaryoblastic leukemia-1/2, a transcriptional co-activator of serum response factor, is required for skeletal myogenic differentiation. J Biol Chem 278(43):41977–41987. https://doi.org/10.1074/jbc.m305679200

    Article  CAS  PubMed  Google Scholar 

  26. Pipes GC, Creemers EE, Olson EN (2006) The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration and myogenesis. Genes Dev 20(12):1545–1556. https://doi.org/10.1101/gad.1428006

    Article  CAS  PubMed  Google Scholar 

  27. Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, Krieg PA, Olson EN (2001) Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105(7):851–862. https://doi.org/10.1016/s0092-8674(01)00404-4

    Article  CAS  PubMed  Google Scholar 

  28. Shiota J, Ishikawa M, Sakagami H, Tsuda M, Baraban JM, Tabuchi A (2006) Developmental expression of the SRF co-activator MAL in brain: role in regulating dendritic morphology. J Neurochem 98(6):1778–1788. https://doi.org/10.1111/j.1471-4159.2006.03992.x

    Article  CAS  PubMed  Google Scholar 

  29. Ishikawa M, Nishijima N, Shiota J, Sakagami H, Tsuchida K, Mizukoshi M, Fukuchi M, Tsuda M, Tabuchi A (2010) Involvement of the serum response factor coactivator megakaryoblastic leukemia (MKL) in the activin-regulated dendritic complexity of rat cortical neurons. J Biol Chem 285(43):32734–32743. https://doi.org/10.1074/jbc.m110.118745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ishikawa M, Shiota J, Ishibashi Y, Hakamata T, Shoji S, Fukuchi M, Tsuda M, Shirao T, Sekino Y, Ohtsuka T, Baraban JM, Tabuchi A (2013) Identification, expression and characterization of rat isoforms of the serum response factor (SRF) coactivator MKL1. FEBS Open Bio 3:387–393. https://doi.org/10.1016/j.fob.2013.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miranda MZ, Lichner Z, Szászi K, Kapus A (2021) MRTF: basic biology and role in kidney disease. Int J Mol Sci 22(11):6040. https://doi.org/10.3390/ijms22116040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113(3):329–342. https://doi.org/10.1016/s0092-8674(03)00278-2

    Article  CAS  PubMed  Google Scholar 

  33. Medjkane S, Perez-Sanchez C, Gaggioli C, Sahai E, Treisman R (2009) Myocardin-related transcription factors and SRF are required for cytoskeletal dynamics and experimental metastasis. Nat Cell Biol 11(3):257–268. https://doi.org/10.1038/ncb1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Panayiotou R, Miralles F, Pawlowski R, Diring J, Flynn HR, Skehel M, Treisman R (2016) Phosphorylation acts positively and negatively to regulate MRTF-A subcellular localisation and activity. Elife 5:e15460. https://doi.org/10.7554/elife.15460

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ariza A, Funahashi Y, Kozawa S, Omar Faruk M, Nagai T, Amano M, Kaibuchi K (2021) Dynamic subcellular localization and transcription activity of the SRF cofactor MKL2 in the striatum are regulated by MAPK. J Neurochem 157(6):1774–1788. https://doi.org/10.1111/jnc.15303

    Article  CAS  PubMed  Google Scholar 

  36. Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N, Treisman R (2014) Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 28(9):943–958. https://doi.org/10.1101/gad.239327.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gualdrini F, Esnault C, Horswell S, Stewart A, Matthews N, Treisman R (2016) SRF Co-factors Control the Balance between Cell Proliferation and Contractility. Mol Cell 64(6):1048–1061. https://doi.org/10.1016/j.molcel.2016.10.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gerber A, Esnault C, Aubert G, Treisman R, Pralong F, Schibler U (2013) Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity. Cell 152(3):492–503. https://doi.org/10.1016/j.cell.2012.12.027

    Article  CAS  PubMed  Google Scholar 

  39. Zaromytidou AI, Miralles F, Treisman R (2006) MAL and ternary complex factor use different mechanisms to contact a common surface on the serum response factor DNA-binding domain. Mol Cell Biol 26(11):4134–4148. https://doi.org/10.1128/mcb.01902-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Knöll B, Nordheim A (2009) Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci 32(8):432–442. https://doi.org/10.1016/j.tins.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  41. Knöll B (2011) Serum response factor mediated gene activity in physiological and pathological processes of neuronal motility. Front Mol Neurosci 4:49. https://doi.org/10.3389/fnmol.2011.00049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arsenian S, Weinhold B, Oelgeschläger M, Rüther U, Nordheim A (1998) Serum response factor is essential for mesoderm formation during mouse embryogenesis. EMBO J 17(21):6289–6299. https://doi.org/10.1093/emboj/17.21.6289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miano JM (2010) Role of serum response factor in the pathogenesis of disease. Lab Invest 90(9):1274–1284. https://doi.org/10.1038/labinvest.2010.104

    Article  CAS  PubMed  Google Scholar 

  44. Stritt C, Stern S, Harting K, Manke T, Sinske D, Schwarz H, Vingron M, Nordheim A, Knöll B (2009) Paracrine control of oligodendrocyte differentiation by SRF-directed neuronal gene expression. Nat Neurosci 12(4):418–427. https://doi.org/10.1038/nn.2280

    Article  CAS  PubMed  Google Scholar 

  45. Stritt C, Knöll B (2010) Serum response factor regulates hippocampal lamination and dendrite development and is connected with reelin signaling. Mol Cell Biol 30(7):1828–1837. https://doi.org/10.1128/mcb.01434-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Johnson AW, Crombag HS, Smith DR, Ramanan N (2011) Effects of serum response factor (SRF) deletion on conditioned reinforcement. Behav Brain Res 220(2):312–318. https://doi.org/10.1016/j.bbr.2011.02.015

    Article  CAS  PubMed  Google Scholar 

  47. Lu PP, Ramanan N (2011) Serum response factor is required for cortical axon growth but is dispensable for neurogenesis and neocortical lamination. J Neurosci 31(46):16651–16664. https://doi.org/10.1523/jneurosci.3015-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lu PP, Ramanan N (2012) A critical cell-intrinsic role for serum response factor in glial specification in the CNS. J Neurosci 32(23):8012–8023. https://doi.org/10.1523/jneurosci.5633-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Parkitna JR, Bilbao A, Rieker C, Engblom D, Piechota M, Nordheim A, Spanagel R, Schütz G (2010) Loss of the serum response factor in the dopamine system leads to hyperactivity. FASEB J 24(7):2427–2435. https://doi.org/10.1096/fj.09-151423

    Article  CAS  PubMed  Google Scholar 

  50. Jain M, Das S, Lu PPY, Virmani G, Soman S, Thumu SCR, Gutmann DH, Ramanan N (2021) SRF is required for maintenance of astrocytes in non-reactive state in the mammalian brain. eNeuro 8(1):ENEURO.0447–19.2020. https://doi.org/10.1523/eneuro.0447-19.2020

  51. Zimprich A, Mroz G, Meyer Zu Reckendorf C, Anastasiadou S, Förstner P, Garrett L, Hölter SM, Becker L, Rozman J, Prehn C, Rathkolb B, Moreth K, Wurst W, Klopstock T, Klingenspor M, Adamski J, Wolf E, Bekeredjian R, Fuchs H, Gailus-Durner V, de Angelis MH, Knöll B (2017) Serum response factor (SRF) ablation interferes with acute stress-associated immediate and long-term coping mechanisms. Mol Neurobiol 54(10):8242–8262. https://doi.org/10.1007/s12035-016-0300-x

    Article  CAS  PubMed  Google Scholar 

  52. Nader K, Krysiak A, Beroun A, Pekala M, Szymanska M, Kuzniewska B, Radwanska K, Kaczmarek L, Kalita K (2019) Loss of serum response factor in mature neurons in the dentate gyrus alters the morphology of dendritic spines and hippocampus-dependent behavioral tasks. Brain Struct Funct 224(8):2691–2701. https://doi.org/10.1007/s00429-019-01925-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Förstner P, Knöll B (2020) Interference of neuronal activity-mediated gene expression through serum response factor deletion enhances mortality and hyperactivity after traumatic brain injury. FASEB J 34(3):3855–3873. https://doi.org/10.1096/fj.201902257rr

    Article  PubMed  Google Scholar 

  54. Kuzniewska B, Nader K, Dabrowski M, Kaczmarek L, Kalita K (2016) Adult deletion of SRF increases epileptogenesis and decreases activity-induced gene expression. Mol Neurobiol 53(3):1478–1493. https://doi.org/10.1007/s12035-014-9089-7

    Article  CAS  PubMed  Google Scholar 

  55. Lösing P, Niturad CE, Harrer M, Reckendorf CMZ, Schatz T, Sinske D, Lerche H, Maljevic S, Knöll B (2017) SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model. Mol Brain 10(1):30. https://doi.org/10.1186/s13041-017-0310-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anastasiadou S, Liebenehm S, Sinske D, Meyer zu Reckendorf C, Moepps B, Nordheim A, Knöll B (2015) Neuronal expression of the transcription factor serum response factor modulates myelination in a mouse multiple sclerosis model. Glia 63(6):958–976. https://doi.org/10.1002/glia.22794

    Article  PubMed  Google Scholar 

  57. Wanner R, Knöll B (2020) Interference with SRF expression in skeletal muscles reduces peripheral nerve regeneration in mice. Sci Rep 10(1):5281. https://doi.org/10.1038/s41598-020-62231-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vialou V, Feng J, Robison AJ, Ku SM, Ferguson D, Scobie KN, Mazei-Robison MS, Mouzon E, Nestler EJ (2012) Serum response factor and cAMP response element binding protein are both required for cocaine induction of ΔFosB. J Neurosci 32(22):7577–7584. https://doi.org/10.1523/jneurosci.1381-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cahill ME, Walker DM, Gancarz AM, Wang ZJ, Lardner CK, Bagot RC, Neve RL, Dietz DM, Nestler EJ (2018) The dendritic spine morphogenic effects of repeated cocaine use occur through the regulation of serum response factor signaling. Mol Psychiatry 23(6):1474–1486. https://doi.org/10.1038/mp.2017.116

    Article  CAS  PubMed  Google Scholar 

  60. Vialou V, Maze I, Renthal W, LaPlant QC, Watts EL, Mouzon E, Ghose S, Tamminga CA, Nestler EJ (2010) Serum response factor promotes resilience to chronic social stress through the induction of DeltaFosB. J Neurosci 30(43):14585–14592. https://doi.org/10.1523/jneurosci.2496-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cesari F, Brecht S, Vintersten K, Vuong LG, Hofmann M, Klingel K, Schnorr JJ, Arsenian S, Schild H, Herdegen T, Wiebel FF, Nordheim A (2004) Mice deficient for the ets transcription factor elk-1 show normal immune responses and mildly impaired neuronal gene activation. Mol Cell Biol 24(1):294–305. https://doi.org/10.1128/mcb.24.1.294-305.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li S, Chang S, Qi X, Richardson JA, Olson EN (2006) Requirement of a myocardin-related transcription factor for development of mammary myoepithelial cells. Mol Cell Biol 26(15):5797–5808. https://doi.org/10.1128/mcb.00211-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sun Y, Boyd K, Xu W, Ma J, Jackson CW, Fu A, Shillingford JM, Robinson GW, Hennighausen L, Hitzler JK, Ma Z, Morris SW (2006) Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Mol Cell Biol 26(15):5809–5826. https://doi.org/10.1128/mcb.00024-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li J, Zhu X, Chen M, Cheng L, Zhou D, Lu MM, Du K, Epstein JA, Parmacek MS (2005) Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proc Natl Acad Sci U S A 102(25):8916–8921. https://doi.org/10.1073/pnas.0503741102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Oh J, Richardson JA, Olson EN (2005) Requirement of myocardin-related transcription factor-B for remodeling of branchial arch arteries and smooth muscle differentiation. Proc Natl Acad Sci USA 102(42):15122–15127. https://doi.org/10.1073/pnas.0507346102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mokalled MH, Johnson A, Kim Y, Oh J, Olson EN (2010) Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development. Development 137(14):2365–2374. https://doi.org/10.1242/dev.047605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. O’Sullivan MC, Pickering M, Giacomo DD, Loscher JS, Murphy KJ (2010) Mkl transcription cofactors regulate structural plasticity in hippocampal neurons. Cereb Cortex 20(8):1915–1925. https://doi.org/10.1093/cercor/bhp262

    Article  PubMed  Google Scholar 

  68. Ishikawa M, Shiota J, Ishibashi Y, Hakamata T, Shoji S, Fukuchi M, Tsuda M, Shirao T, Sekino Y, Baraban JM, Tabuchi A (2014) Cellular localization and dendritic function of rat isoforms of the SRF coactivator MKL1 in cortical neurons. NeuroReport 25(8):585–592. https://doi.org/10.1097/wnr.0000000000000141

    Article  CAS  PubMed  Google Scholar 

  69. Ishibashi Y, Shoji S, Ihara D, Kubo Y, Tanaka T, Tanabe H, Hakamata T, Miyata T, Satou N, Sakagami H, Mizuguchi M, Kikuchi K, Fukuchi M, Tsuda M, Takasaki I, Tabuchi A (2021) Expression of SOLOIST/MRTFB i4, a novel neuronal isoform of the mouse serum response factor coactivator myocardin-related transcription factor-B, negatively regulates dendritic complexity in cortical neurons. J Neurochem 159(4):762–777. https://doi.org/10.1111/jnc.15122

    Article  CAS  PubMed  Google Scholar 

  70. Kalita K, Kuzniewska B, Kaczmarek L (2012) MKLs: co-factors of serum response factor (SRF) in neuronal responses. Int J Biochem Cell Biol 44(9):1444–1447. https://doi.org/10.1016/j.biocel.2012.05.008

    Article  CAS  PubMed  Google Scholar 

  71. Tabuchi A, Ihara D (2021) Regulation of dendritic synaptic morphology and transcription by the SRF Cofactor MKL/MRTF. Front Mol Neurosci 14:767842. https://doi.org/10.3389/fnmol.2021.767842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kikuchi K, Ihara D, Fukuchi M, Tanabe H, Ishibashi Y, Tsujii J, Tsuda M, Kaneda M, Sakagami H, Okuno H, Bito H, Yamazaki Y, Ishikawa M, Tabuchi A (2019) Involvement of SRF coactivator MKL2 in BDNF-mediated activation of the synaptic activity-responsive element in the Arc gene. J Neurochem 148(2):204–218. https://doi.org/10.1111/jnc.14596

    Article  CAS  PubMed  Google Scholar 

  73. Sun Q, Chen G, Streb JW, Long X, Yang Y, Stoeckert CJ Jr, Miano JM (2006) Defining the mammalian CArGome. Genome Res 16(2):197–207. https://doi.org/10.1101/gr.4108706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Benson CC, Zhou Q, Long X, Miano JM (2011) Identifying functional single nucleotide polymorphisms in the human CArGome. Physiol Genomics 43(18):1038–1048. https://doi.org/10.1152/physiolgenomics.00098.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chow N, Bell RD, Deane R, Streb JW, Chen J, Brooks A, Van Nostrand W, Miano JM, Zlokovic BV (2007) Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer’s phenotype. Proc Natl Acad Sci USA 104(3):823–828. https://doi.org/10.1073/pnas.0608251104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Apazoglou K, Farley S, Gorgievski V, Belzeaux R, Lopez JP, Grenier J, Ibrahim EC, El Khoury MA, Tse YC, Mongredien R, Barbé A, de Macedo CEA, Jaworski W, Bochereau A, Orrico A, Isingrini E, Guinaudie C, Mikasova L, Louis F, Gautron S, Groc L, Massaad C, Yildirim F, Vialou V, Dumas S, Marti F, Mechawar N, Morice E, Wong TP, Caboche J, Turecki G, Giros B, Tzavara ET (2018) Antidepressive effects of targeting ELK-1 signal transduction. Nat Med 24(5):591–597. https://doi.org/10.1038/s41591-018-0011-0

    Article  CAS  PubMed  Google Scholar 

  77. Hashimoto S, Boissel S, Zarhrate M, Rio M, Munnich A, Egly JM, Colleaux L (2011) MED23 mutation links intellectual disability to dysregulation of immediate early gene expression. Science 333(6046):1161–1163. https://doi.org/10.1126/science.1206638

    Article  CAS  PubMed  Google Scholar 

  78. Luo XJ, Huang L, Oord EJ, Aberg KA, Gan L, Zhao Z, Yao YG (2015) Common variants in the MKL1 gene confer risk of schizophrenia. Schizophr Bull 41(3):715–727. https://doi.org/10.1093/schbul/sbu156

    Article  PubMed  Google Scholar 

  79. Holt R, Barnby G, Maestrini E, Bacchelli E, Brocklebank D, Sousa I, Mulder EJ, Kantojärvi K, Järvelä I, Klauck SM, Poustka F, Bailey AJ, Monaco AP, EU Autism MOLGEN Consortium (2010) Linkage and candidate gene studies of autism spectrum disorders in European populations. Eur J Hum Genet 18(9):1013–1019. https://doi.org/10.1038/ejhg.2010.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Neale BM, Kou Y, Liu L, Ma’ayan A, Samocha KE, Sabo A, Lin CF, Stevens C, Wang LS, Makarov V, Polak P, Yoon S, Maguire J, Crawford EL, Campbell NG, Geller ET, Valladares O, Schafer C, Liu H, Zhao T, Cai G, Lihm J, Dannenfelser R, Jabado O, Peralta Z, Nagaswamy U, Muzny D, Reid JG, Newsham I, Wu Y, Lewis L, Han Y, Voight BF, Lim E, Rossin E, Kirby A, Flannick J, Fromer M, Shakir K, Fennell T, Garimella K, Banks E, Poplin R, Gabriel S, DePristo M, Wimbish JR, Boone BE, Levy SE, Betancur C, Sunyaev S, Boerwinkle E, Buxbaum JD, Cook EH Jr, Devlin B, Gibbs RA, Roeder K, Schellenberg GD, Sutcliffe JS, Daly MJ (2012) Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485(7397):242–245. https://doi.org/10.1038/nature11011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Haenig C, Atias N, Taylor AK, Mazza A, Schaefer MH, Russ J, Riechers SP, Jain S, Coughlin M, Fontaine JF, Freibaum BD, Brusendorf L, Zenkner M, Porras P, Stroedicke M, Schnoegl S, Arnsburg K, Boeddrich A, Pigazzini L, Heutink P, Taylor JP, Kirstein J, Andrade-Navarro MA, Sharan R, Wanker EE (2020) Interactome mapping provides a network of neurodegenerative disease proteins and uncovers widespread protein aggregation in affected brains. Cell Rep 32(7):108050. https://doi.org/10.1016/j.celrep.2020.108050

    Article  CAS  PubMed  Google Scholar 

  82. Mandal P, Belapurkar V, Nair D, Ramanan N (2021) Vinculin-mediated axon growth requires interaction with actin but not talin in mouse neocortical neurons. Cell Mol Life Sci 78(15):5807–5826. https://doi.org/10.1007/s00018-021-03879-7

    Article  CAS  PubMed  Google Scholar 

  83. Li CL, Sathyamurthy A, Oldenborg A, Tank D, Ramanan N (2014) SRF phosphorylation by glycogen synthase kinase-3 promotes axon growth in hippocampal neurons. J Neurosci 34(11):4027–4042. https://doi.org/10.1523/jneurosci.4677-12.2014

    Article  PubMed  PubMed Central  Google Scholar 

  84. Stern S, Haverkamp S, Sinske D, Tedeschi A, Naumann U, Di Giovanni S, Kochanek S, Nordheim A, Knöll B (2013) The transcription factor serum response factor stimulates axon regeneration through cytoplasmic localization and cofilin interaction. J Neurosci 33(48):18836–18848. https://doi.org/10.1523/jneurosci.3029-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hipp L, Beer J, Kuchler O, Reisser M, Sinske D, Michaelis J, Gebhardt JCM, Knöll B (2019) Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation. Proc Natl Acad Sci USA 116(3):880–889. https://doi.org/10.1073/pnas.1812734116

    Article  CAS  PubMed  Google Scholar 

  86. Tabuchi A, Estevez M, Henderson JA, Marx R, Shiota J, Nakano H, Baraban JM (2005) Nuclear translocation of the SRF co-activator MAL in cortical neurons: role of RhoA signalling. J Neurochem 94(1):169–180. https://doi.org/10.1111/j.1471-4159.2005.03179.x

    Article  CAS  PubMed  Google Scholar 

  87. Kaneda M, Sakagami H, Hida Y, Ohtsuka T, Satou N, Ishibashi Y, Fukuchi M, Krysiak A, Ishikawa M, Ihara D, Kalita K, Tabuchi A (2018) Synaptic localisation of SRF coactivators, MKL1 and MKL2, and their role in dendritic spine morphology. Sci Rep 8(1):727. https://doi.org/10.1038/s41598-017-18905-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Meyer zu Reckendorf C, Anastasiadou S, Bachhuber F, Franz-Wachtel M, Macek B, Knöll B (2016) Proteomic analysis of SRF associated transcription complexes identified TFII-I as modulator of SRF function in neurons. Eur J Cell Biol 95(1):42–56. https://doi.org/10.1016/j.ejcb.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  89. Rusconi F, Grillo B, Ponzoni L, Bassani S, Toffolo E, Paganini L, Mallei A, Braida D, Passafaro M, Popoli M, Sala M, Battaglioli E (2016) LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior. Proc Natl Acad Sci USA 113(13):3651–3656. https://doi.org/10.1073/pnas.1511974113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gerosa L, Grillo B, Forastieri C, Longaretti A, Toffolo E, Mallei A, Bassani S, Popoli M, Battaglioli E, Rusconi F (2020) SRF and SRFΔ5 splicing isoform recruit corepressor LSD1/KDM1A modifying structural neuroplasticity and environmental stress response. Mol Neurobiol 57(1):393–407. https://doi.org/10.1007/s12035-019-01720-8

    Article  CAS  PubMed  Google Scholar 

  91. Del Blanco B, Guiretti D, Tomasoni R, Lopez-Cascales MT, Muñoz-Viana R, Lipinski M, Scandaglia M, Coca Y, Olivares R, Valor LM, Herrera E, Barco A (2019) CBP and SRF co-regulate dendritic growth and synaptic maturation. Cell Death Differ 26(11):2208–2222. https://doi.org/10.1038/s41418-019-0285-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kawashima T, Okuno H, Nonaka M, Adachi-Morishima A, Kyo N, Okamura M, Takemoto-Kimura S, Worley PF, Bito H (2009) Synaptic activity-responsive element in the Arc/Arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons. Proc Natl Acad Sci USA 106(1):316–321. https://doi.org/10.1073/pnas.0806518106

    Article  PubMed  Google Scholar 

  93. Rodríguez-Tornos FM, San Aniceto I, Cubelos B, Nieto M (2013) Enrichment of conserved synaptic activity-responsive element in neuronal genes predicts a coordinated response of MEF2 CREB and SRF. PLoS ONE 8(1):e53848. https://doi.org/10.1371/journal.pone.0053848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, for their assistance with this work. We also thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by JSPS KAKENHI grant numbers JP26460064 (AT) and JP18K06625 (AT), and grants from the Tamura Science and Technology Foundation (AT), the Toyama First Bank Foundation (AT), and the Smoking Research Foundation (AT).

Author information

Authors and Affiliations

Authors

Contributions

AT wrote the manuscript. DI assisted in arranging the reference section and making the tables and figures. All authors edited and revised the manuscript and approved its final version for publication.

Corresponding author

Correspondence to Akiko Tabuchi.

Ethics declarations

Competing interests

The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabuchi, A., Ihara, D. SRF in Neurochemistry: Overview of Recent Advances in Research on the Nervous System. Neurochem Res 47, 2545–2557 (2022). https://doi.org/10.1007/s11064-022-03632-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03632-x

Keywords

Navigation