Skip to main content
Log in

An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Curdlan is produced by Agrobacterium sp. ATCC 31749 under nitrogen-limited conditions not associated with cell growth. A novel curdlan production process was developed based on the different nutrient requirements for microbial cell growth and its efficiency was increased by integrating carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation. By feeding ammonium solution to supply abundant nitrogen source and controlling pH in Fermentor I, cell growth was accelerated. High cell density of 29 g/L was attained. The culture broth in Fermentor I was then inoculated into sequencing Fermentor II which alleviated the high requirement for dissolved oxygen and accumulation of inhibitory metabolic by-products during curdlan production. Fermentor I promoted cell growth. Curdlan production started instantaneously in Fermentor II. By feeding nutrient solution with high carbon/nitrogen ratio and NaOH solution for pH adjustment, a feasible and optimal curdlan production process was formulated. The productivity, conversion efficiency and curdlan yield were achieved of 0.98 g/(L h), 57% (w) and 67 g/L, respectively. Such novel process can be scaled up for significant cost reduction at the industrial level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harada, T., Fujimori, K., Hirose, S., and Masada, M., Agric. Biol. Chem., 1966, vol. 30, no. 8, pp. 764–769.

    Article  CAS  Google Scholar 

  2. Lawford, H.G., US Patent No. 4355106, 1982.

  3. Kim, M.K., Ryu, K.E., Choi, W.A., Rhee, Y.H., and Lee, I.Y., Biochem. Eng. J., 2003, vol. 16, no. 2, pp. 163–168.

    Article  CAS  Google Scholar 

  4. Ghai, S.K., Hisamatsu, A., Amemura, A., and Harada, T., J. Gen. Microbiol., 1981, vol. 122, no. 1, pp. 33–40.

    CAS  Google Scholar 

  5. Kenyon, W.J. and Buller, C.S., J. Ind. Microbiol. Biot., 2002, vol. 29, no. 4, pp. 200–203.

    Article  CAS  Google Scholar 

  6. Kim, M.K., Lee, I.Y., Ko, J.H., Rhee, Y.H., and Park, Y.H., Biotechnol. Bioeng., 1999, vol. 62, no. 3, pp. 317–323.

    Article  CAS  PubMed  Google Scholar 

  7. Zhan, X.B., Lin, C.C., and Zhang, H.T., Appl. Microbiol. Biotechnol., 2012, vol. 93, no. 2, pp. 525–531.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, I.Y., Kim, M.K., Lee, J.H., Seo, W.T., Jung, J.K., Lee, H.W., and Park, Y.H., Bioprocess Eng., 1999, vol. 20, no. 4, pp. 283–287.

    CAS  Google Scholar 

  9. Lawford, H., Keenan, J., Phillips, K., and Orts, W., Biotechnol. Lett., 1986, vol. 8, no. 3, pp. 145–150.

    Article  CAS  Google Scholar 

  10. Lawford, H.G. and Rousseau, J.D., Appl. Biochem. Biotech., 1991, vol. 28/29, no. 1, pp. 667–684.

    Article  Google Scholar 

  11. Yu, L.J., Wu, J.R., Zheng, Z.Y., Lin, C.C., and Zhan, X.B., Appl. Biochem. Microbiol., 2011, vol. 47, no. 5, pp. 487–493.

    Article  CAS  Google Scholar 

  12. Yu, L.J., Wu, J.R., Zheng, Z.Y., Zhan. X.B., and Lin, C.C., Curr. Microbiol., 2011, vol. 63, no. 1, pp. 60–67.

    Article  CAS  PubMed  Google Scholar 

  13. Lawford, H.G., Phillips, K.R., and Lawford, G.R., Biotechnol. Lett., 1982, vol. 4, no. 1, pp. 689–694.

    Article  CAS  Google Scholar 

  14. Lee, I.Y., Seo, W.T., Kim, M.K., Park, C.S., and Park, Y.H., J. Ind. Microbiol. Biotechnol., 1997, vol. 18, no. 4, pp. 255–259.

    Article  CAS  Google Scholar 

  15. Zhang, H.T., Zhan, X.B., Zheng, Z.Y., Wu, J.R., Yu, X.B., Jiang, Y., and Lin, C.C., Appl. Microbiol. Biotechnol., 2011, vol. 91, no. 1, pp. 163–175.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, H.T., Zhan, X.B., Zheng, Z.Y., Wu, J.R., English, N., Yu, X.B., and Lin, C.C., Appl. Microbiol. Biotechnol., 2012, vol. 93, no. 1, pp. 367–379.

    Article  PubMed  Google Scholar 

  17. Sumner, J.B. and Somers, G.F., Laboratory Experiments in Biological Chemistry, Sumner, J.B. and Somers, G.F., Eds., New York: Academic Press, 1949.

  18. Harwood, J.E. and Huysen, D.J., Water Res., 1970, vol. 4, no. 10, pp. 695–704.

    Article  Google Scholar 

  19. Schädler, S., Burkhardt, C. and Kappler, A., Geomicrobiol. J., 2008, vol. 25, no. 5, pp. 228–239.

    Article  Google Scholar 

  20. Drobne, D., Milani, M., Leser, V., and Tatti, F., Microsc. Res. Techniq., 2007, vol. 70, no. 10, pp. 895–903.

    Article  Google Scholar 

  21. Lee, J.H. and Lee, I.Y., Biotechnol. Lett., 2001, vol. 23, no. 4, pp. 1131–1134.

    Article  CAS  Google Scholar 

  22. West, T.P., J. Basic Microbiol., 2006, vol. 46, no. 2, pp. 153–157.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, J.H. and Park, Y.H., Biotechnol. Lett., 2001, vol. 23, no. 7, pp. 525–530.

    Article  CAS  Google Scholar 

  24. Phillips, K.R., Pik, J., Lawford, H.G., Lavers, B., Kligerman, A., and Lawford, G.R., Can. J. Microbiol., 1983, vol. 29, no. 10, pp. 1331–1338.

    Article  CAS  PubMed  Google Scholar 

  25. Puliga, S.L., Handa, S., Gummadi, S.N., and Doble, M., Int. J. Food Eng., 2010, vol. 6, no. 1, article 6.

    Google Scholar 

  26. Lawford, H.G. and Rousseau, J.D., Appl. Biochem. Biotech., 1992, vol. 34/35, no. 5, pp. 597–612.

    Article  Google Scholar 

  27. Lee, J.H., Lee, I.Y., Kim, M.K., and Park, Y.H. J. Ind. Microbiol. Biot., 1999, vol. 23, no. 2, pp. 143–148.

    Article  CAS  Google Scholar 

  28. Leigh, J.A. and Dodsworth, J.A., Annu. Rev. Microbiol., 2007, vol. 61, no. 1, pp. 349–377.

    Article  CAS  PubMed  Google Scholar 

  29. Lee, J.W. and Yeomans, W.G., Biotechnol. Lett., 1997, vol. 19, no. 12, pp. 1217–1221.

    Article  CAS  Google Scholar 

  30. Zheng, Z.Y., Lee, J.W., Zhan, X.B., Shi, Z.P., Wang, L., Zhu, L., Wu, J.R., and Lin, C.C., Biotechnol. Bioproc. Eng., 2007, vol. 12, no. 4, 359–365.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Zhan.

Additional information

Published in Russian in Prikladnaya Biokhimiya i Mikrobiologiya, 2014, Vol. 50, No. 1, pp. 44–51.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Z.Y., Jiang, Y., Zhan, X.B. et al. An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation. Appl Biochem Microbiol 50, 35–42 (2014). https://doi.org/10.1134/S000368381401013X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000368381401013X

Keywords

Navigation