Skip to main content
Log in

Effect of metabolic structures and energy requirements on curdlan production byAlcaligenes faecalis

  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A comprehensive metabolic network was proposed forAlcaligenes faecalis and employed in a stoichiometrically based flux balance model for curdlan production optimization. The maximal yield of curdlan was evaluated for curdlan batch production. Various metabolic structures and metabolic pathway distributions related with the curdlan maximal yield was evaluated. The results showed that the energy efficiency rather than the substrate supply was the major constraint for the enhancement of curdlan production. The increase in specific rate of glucose uptake could enhance curdlan production yield due to the decrease of the ratio of metabolic maintenance to substrate consumption. However, some of the energy loss and nutrient limitation associated with the increase of metabolic maintenance would adversely affect the conversion efficiency of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

6-P-G:

6-Phosphogluconate

AcCoA:

Acetyl coenzyme A

DHAP:

Dihydroxyacetone-phosphate

DCW:

Dry cell weight

F-6-P:

Fructose-6-phosphate

FDP:

Fructose-1,6-bisphosphate

G-1-P:

Glucose-1-phosphate

G-6-P:

Glucose-6-phosphate

GAP:

Glyceraldehyde-3-phosphate

KDPG:

2-Keto-3-deoxy-6-phosphogluconate

PEP:

Phosphoenolpyruvate

PQQ:

Pyrroloquinoline quinine

PQQH2 :

Dihydroquinone PQQ

PYR:

Pyruvate

Ri-5-P:

Ribose-5-phosphate

TCA:

Tricarboxylic acid cycle

UDPG:

UDP-glucose

Lipid-P:

Isoprenoid lipid-phosphate

Lipid-P-G:

Isoprenoid lipid-phosphoglucose

References

  1. Harada, T. (1977) Production, properities, and application of curdlan. pp. 265–283. In: P. A. Sanford and A. Laskin (eds.).Extracellular Microbial Polysaccharides. American Chemical Society, Washington DC, USA.

    Google Scholar 

  2. Sutherland, I. W. and D. C. Ellwood (1979) Microbial exopolysaccharide-industrial polymers of current and future potential. pp. 107–150. In: A. T. Bull, D. C. Ellwood, and C. Ratledge (eds.).Microbial Technology. Society for General Microbiology, London, UK.

    Google Scholar 

  3. Lee, I. Y., M. K. Kim, J. H. Lee, W. T. Sec, J. K. Jung, H. W. Lee, and Y. H. Park (1999) Influence of agitation speed on production of curdlan byAgrobacterium species.Bioprocess Eng. 20: 283–287.

    CAS  Google Scholar 

  4. Lee, J.-H. and I. Y. Lee (2001) Optimization of uracil addition for curdlan (β-1→3-glucan) production byAgrobacterium sp.Biotechnol. Lett. 23: 1131–1134.

    Article  CAS  Google Scholar 

  5. Kim, M.-K., I.-Y. Lee, J.-H. Ko, Y.-H. Rhee, and Y.-H. Park (1999) Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis inAgrobacterium species.Biotechnol. Bioeng. 62: 317–323.

    Article  CAS  Google Scholar 

  6. Zarnt, G., T. Schrader, and J. R. Andreesen (1997) Degradation of tetrahydrofurfuryl alcohol byRalstonia eutropha is initiated by an inducible pyrroloquinoline quinone-dependent alcohol dehydrogenase.Appl. Environ. Microbiol. 63: 4891–4898.

    CAS  Google Scholar 

  7. Schleicher, E. and H. Simon (1977) The stereochemical course of the hydrogen transfer to NAD, catalyzed by bacterial glucose dehydrogenase and hydrogenase ofAlcaligenes eutrophus H 16.FEBS Lett. 74: 269–271.

    Article  CAS  Google Scholar 

  8. Letisse, F., P. Chevallereau, J. L. Simon, and N. Lindley (2002) The influence of metabolic network structures and energy requirements on xanthan gum yields.J. Biotechnol. 99: 307–317.

    Article  CAS  Google Scholar 

  9. Sawyer, M. H., P. Baumann, and L. Baumann (1977) Pathways of D-fructose and D-glucose catabolism in marine species ofAlcaligenes, Pseudomonas marina, andAlteromenas communis.Arch. Microbiol. 112: 169–172.

    Article  CAS  Google Scholar 

  10. Wang, L., X. B. Zhan, Y.-H. Zhu, Z.-Y. Li, and Y. Yang (2002) Influence of pH control on the production of curdlan byAlcaligenes faecalis strain.Chin. J. Biotechnol. 18: 634–637.

    CAS  Google Scholar 

  11. Sumner, J. B. and G. F. Somers (1949) Dinitrosalicylic method for glucose. pp. 38–39. In: J. B. Sumner and G. F. Somers (eds.).Laboratory Experiments in Biological Chemistry. Academic Press, New York, NY, USA.

    Google Scholar 

  12. Harwood, J. E. and D. J. Huysen (1970) Automated analysis of ammonia in water.Water Res. 4: 695–704.

    Article  Google Scholar 

  13. Goosen, N., D. A. Vermaas, and P. van de Putte (1987) Cloning of the genes involved in synthesis of coenzyme pyrroloquinoline-quinone fromAcetinobacter calcoaceticus.J. Bacteriol. 169: 303–307.

    CAS  Google Scholar 

  14. Anderson, G. L., M. Love, and B. K. Zeider (2003) Metabolic energy from arsenite oxidation inAlcaligenes faecalis.J. Phys. IV 107: 49–52.

    Article  CAS  Google Scholar 

  15. Hoke, K. R., N. Cobb, F. A. Armstrong, and R. Hille (2004) Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center.Biochemistry 43: 1667–1674.

    Article  CAS  Google Scholar 

  16. Shuler, M. L. and F. Kargi (2002) How cells grow. pp. 155–175. In: M. L. Shuler and F. Kargi (eds.)Bioprocess Engineering: Basic Concepts. Prentice Hall PTR, NY, USA.

    Google Scholar 

  17. Phillips, K. R. and H. G. Lawford (1983) Theoretical maximum and observed product yield associated with curdlan production byAlcaligenes faecalis.Can. J. Microbiol. 29: 1270–1276.

    Article  CAS  Google Scholar 

  18. Varma, A., B. W. Boesch, and B. O. Palsson (1993) Stoichiometric interpretation ofEscherichia coli glucose catabolism under various oxygenation rates.Appl. Environ. Microbiol. 59: 2465–2473.

    CAS  Google Scholar 

  19. Gottschalk, G. (1979)Bacterial Metabolism. pp. 51–68. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  20. Lawford, H., J. Keenan, K. Phillips, and W. Orts (1986) Influence of bioreactor design on the rate and amount of curdlan-type exopolysaccharide production byAlcaligenes faecalis.Biotechnol. Lett. 8: 145–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Bei Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, ZY., Lee, J.W., Zhan, X.B. et al. Effect of metabolic structures and energy requirements on curdlan production byAlcaligenes faecalis . Biotechnol. Bioprocess Eng. 12, 359–365 (2007). https://doi.org/10.1007/BF02931057

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02931057

Keywords

Navigation