Skip to main content

Advertisement

Log in

Recent advances in curdlan biosynthesis, biotechnological production, and applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Curdlan is a water-insoluble β-(1,3)-glucan produced by Agrobacterium species under nitrogen-limited condition. Its heat-induced gelling properties render curdlan to be very useful in the food industry initially. Recent advances in the understanding of the role curdlan plays in both innate and adaptive immunity lead to its growing applications in biomedicine. Our review focuses on the recent advances on curdlan biosynthesis and the improvements of curdlan fermentation production both from our laboratory and many others as well as the latest advances on the new applications of curdlan and its derivatives particularly in their immunological functions in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apetrei NS, Calugaru A, Badulescu MM, Lupu AR, Moscovici M, Mocanu G, Mihai D, Szegli G, Cremer L (2010) The effects of some Curdlan derivatives on Dectin-1 expression and cytokine production in human peripheral blood mononuclear cells. Roum Arch Microbiol Immunol 69:61–66

    CAS  Google Scholar 

  • Dennehy KM, Brown GD (2007) The role of the beta-glucan receptor Dectin-1 in control of fungal infection. J Leukoc Biol 82:253–258

    Article  CAS  Google Scholar 

  • Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H, Elbers CC, Johnson MD, Cambi A, Huysamen C, Jacobs L, Jansen T, Verheijen K, Masthoff L, Morre SA, Vriend G, Williams DL, Perfect JR, Joosten LA, Wijmenga C, van der Meer JW, Adema GJ, Kullberg BJ, Brown GD, Netea MG (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361:1760–1767

    Article  CAS  Google Scholar 

  • Goodridge HS, Wolf AJ, Underhill DM (2009) β-glucan recognition by the innate immune system. Immunol Rev 230:38–50

    Article  CAS  Google Scholar 

  • Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, Bose N, Chan ASH, Magee AS, Danielson WA, Vasilakos UDM (2011) Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472:471–475

    Article  CAS  Google Scholar 

  • Gordon M, Guralnik M, Kaneko Y, Mimura T, Goodgame J, Lang W (1995) Further clinical-studies of curdlan sulfate (Crds): an anti-HIV agent. J Med 26:97–131

    CAS  Google Scholar 

  • Harada T, Fujimori K, Hirose S, Masada M (1966) Growth and β-glucan (10C3K) production by a mutant of Alcaligenes faecalis var. myxogenes in defined medium. Agric Biol Chem 30:764–769

    Article  CAS  Google Scholar 

  • Harada T, Mamoru, T, Harada A (1993) Curdlan. In: Whistler RL, BeMiller JN (eds) Industrial gums. Polysaccharides and their derivatives, 3rd edn. Academic Press, San Diego, pp 427–445

  • Hasegawa T, Numata M, Okumura S, Kimura T, Sakurai K, Shinkai S (2007) Carbohydrate appended curdlan as a new family of glycoclusters with binding properties both for a polynucleotide and lectins. Org Biomol Chem 5:2404–2412

    Article  CAS  Google Scholar 

  • Herre J, Gordon S, Brown GD (2004) Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol Immunol 40:869–876

    Article  CAS  Google Scholar 

  • Jagodzinski PP, Wiaderkiewicz R, Kurzawski G, Kloczewiak M, Nakkashima H, Hyjek E, Yamamoto N, Uryu T, Kaneko Y, Posner MR, Kozbor D (1994) Mechanism of the inhibitory effect of curdlan sulfate on HIV-1 infection in vitro. Virology 202:735–745

    Article  CAS  Google Scholar 

  • Jin L-H, Um H-J, Yin C-J, Kim Y-H, Lee J-H (2008) Proteomic analysis of curdlan-producing Agrobacterium sp. in response to pH downshift. J Biotechnol 138:80–87

    Article  CAS  Google Scholar 

  • Kanke M, Katayama H, Nakamura M (1995a) Application of curdlan to control drug-delivery. 2. In-vitro and in-vivo drug-release studies of theophylline-containing curdlan tablets. Biol Pharm Bull 18:1102–1108

    Google Scholar 

  • Kanke M, Tanabe E, Katayama H, Koda Y, Yashitome H (1995b) Application of curdlan to control drug-delivery. 3. Drug-release from sustained-release suppositories in-vitro. Biol Pharm Bull 18:1154–1158

    Article  CAS  Google Scholar 

  • Kataoka K, Muta T, Yamazaki S, Takeshige K (2002) Activation of macrophages by linear (1 → 3)-β-D-glucans implications for the recognition of fungi by innate immunity. J Biol Chem 277:36825–36831

    Article  CAS  Google Scholar 

  • Kerrigan AM, Brown GD (2010) Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev 234:335–352

    Article  CAS  Google Scholar 

  • Kim M-K, Lee I-Y, Ko J-H, Rhee Y-H, Park Y-H (1999) Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnol Bioengin 62:317–323

    Article  CAS  Google Scholar 

  • Kim M-K, Ryu K-E, Choi W-A, Rhee Y-H, Lee I-Y (2003) Enhanced production of (1–>3)-[beta]–glucan by a mutant strain of Agrobacterium species. Biochem Engin J 16:163–168

    Article  CAS  Google Scholar 

  • Kim BD, Na K, Choi HK (2005) Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan. Eur J Pharm Sci 24:199–205

    Article  CAS  Google Scholar 

  • Koumoto K, Kimura T, Kobayashi H, Sakurai K, Shinkai S (2001) Chemical modification of curdlan to induce an interaction with poly(C). Chemical Letters, 9, 908–909

    Google Scholar 

  • Kumar H, Kumagai Y, Tsuchida T, Koenig PA, Satoh T, Guo ZJ, Jang MH, Saitoh T, Akira S, Kawai T (2009) Involvement of the NLRP3 inflammasome in innate and humoral adaptive immune responses to fungal β-glucan. J Immunol 183:8061–8067

    Article  CAS  Google Scholar 

  • Laroche C, Michaud P (2007) New developments and prospective applications for (1, 3) glucans. Recent Pat Biotechnol 1:59–73

    Article  CAS  Google Scholar 

  • Lee I-Y (2002) Curdlan. In: Vandamme EJ, De Baets S, Steinbuchel A (eds) Polysaccharides I: Polysaccharides from prokaryotes (Biopolymers vol 5). Wiley-VCH, Weinheim, pp 135–158

    Article  CAS  Google Scholar 

  • Lee JH, Lee IY (2001) Optimization of uracil addition for curdlan (beta-1–>3-glucan) production by Agrobacterium sp. Biotechnol Lett 23:1131–1134

    Article  CAS  Google Scholar 

  • Lee JH, Park YH (2001) Optimal production of curdlan by Agrobacterium sp. with feedback inferential control of optimal pH profile. Biotechnol Lett 23:525–530

    Article  CAS  Google Scholar 

  • Lee JH, Lee IY, Kim MK, Park YH (1999) Optimal pH control of batch process for production of curdlan by Agrobacterium species. J Ind Microbiol Biotechnol 23:143–148

    Google Scholar 

  • Li L, Gao F, Tang H, Bai Y, Li R, Li X, Liu L, Wang Y, Zhang Q (2010) Self-assembled nanoparticles of cholerterol-conjugated carboxylmethyl curdlan as a novel carrier of epirubicin. Nanotechnology 21:265601. doi:10.1088/0957-4484/21/26/265601

    Article  Google Scholar 

  • McIntosh M, Stone B, Stanisich VA (2005) Curdlan and other bacterial (1–3)- β-D-glucans. Appl Microbiol Biotechnol 68:163–173

    Article  CAS  Google Scholar 

  • Minari J, Mochizuki S, Matsuzaki T, Adachi Y, Ohno N, Sakurai K (2011) Enhanced cytokine secretion from primary macrophages due to Dectin-1 mediated uptake of CpG DNA/beta-1,3-glucan complex. Bioconjug Chem 22:9–15

    Article  CAS  Google Scholar 

  • Nakao Y, Konno A, Taguchi T, Tawada T, Kasai H, Toda J, Terasaki M (1991) Curdlan: Properties and application to foods. J Food Science 56:769–772

    Article  CAS  Google Scholar 

  • Palma AS, Feizi T, Zhang Y, Stoll MS, Lawson AM, Diaz-Rodriguez E, Campanero-Rhodes MA, Costa J, Gordon S, Brown GD, Chai W (2006) Ligands for the beta-glucan receptor, Dectin-1, assigned using “designer” microarrays of oligosaccharide probes (neoglycolipids) generated from glucan polysaccharides. J Biol Chem 281:5771–5779

    Article  CAS  Google Scholar 

  • Ruffing AM, Castro-Melchor M, Hu W-S, Chen RR (2011) Genome Sequencing of the Curdlan-Producing Agrobacterium sp. ATCC 31749. J Bacteriol 193:4294–4295. doi:10.1128/JB.05302-11

    Article  CAS  Google Scholar 

  • Saijo S, Iwakura Y (2011) Dectin-1 and Dectin-2 in innate immunity against fungi. Int Immunol 23:467–472

    Article  CAS  Google Scholar 

  • Sasaki T, Abiko N, Sugino Y, Nitta K (1978) Dependence on chain-length of anti-tumor activity of (1,3)-β-D-glucan from Alcaligenes faecalis var. myxogenes, IFO 13140, and its acid-degraded products. Cancer Res 38:379–383

    CAS  Google Scholar 

  • Subedi RK, Kang KW, Choi H (2009) Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin. Eur J Pharm Sci 37:508–513

    Article  CAS  Google Scholar 

  • Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L, Gordon S, Wong SY (2002) The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169:3876–3882

    CAS  Google Scholar 

  • Taylor PR, Tsoni SV, Willment JA, Dennehy KM, Rosas M, Findon H, Haynes K, Steele C, Botto M, Gordon S, Brown GD (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8:31–38

    Article  CAS  Google Scholar 

  • West TP (2006) Pyrimidine base supplementation effects curdlan production in Agrobacterium sp ATCC 31749. J Basic Microbiol 46:153–157

    Article  CAS  Google Scholar 

  • West TP (2009a) Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749. J Basic Microbiol 49:589–592

    Article  CAS  Google Scholar 

  • West TP (2009b) Effect of yeast extract supplementation on curdlan production from condensed corn distillers solubles. Res J Microbiol 4:202–207

    Article  Google Scholar 

  • Wu JR, Zhan XB, Liu H, Zheng ZY (2008) Enhanced production of curdlan by Alcaligenes faecalis by selective feeding with ammonia water during the cell growth phase of fermentation. Chinese J Biotechnol 24:1035–1039

    Article  CAS  Google Scholar 

  • Yu L-J, Wu J-R, Zheng Z-Y, Zhan X-B, Lin CC (2011a) Changes of curdlan biosynthesis and nitrogenous compounds utilization characterized in ntrC mutant of Agrobacterium sp. ATCC 31749. Curr Microbiol 63:60–67

    Article  CAS  Google Scholar 

  • Yu LJ, Wu JR, Zheng ZY, Lin CC, Zhan XB (2011b) Changes in gene transcription and protein expression involved in the response of Agrobacterium sp. ATCC 31749 to nitrogen availability during curdlan fermentation. Appl Biochem Microbiol 47:487–493

    Article  CAS  Google Scholar 

  • Yu LJ, Wu JR, Liu J, Zhan XB, Zheng ZY, Lin CC (2011c) Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates. Biotechnol Bioproc Engin 16:34–41

    Article  CAS  Google Scholar 

  • Zhang HT, Setubal JC, Zhan XB, Zheng ZY, Yu LJ, Wu JR, Chen DQ (2011a) Component identification of electron transport chains in curdlan-producing Agrobacterium sp. ATCC 31749 and its genome-specific prediction using comparative genome and phylogenetic trees analysis. J Ind Microbiol Biotechnol 38:667–677

    Article  CAS  Google Scholar 

  • Zhang H-T, Zhan X-B, Zheng Z-Y, Wu J-R, Yu X-B, Jiang Y, Lin C-C (2011b) Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions. Appl Microbiol Biotechnol 91:163–175

    Article  CAS  Google Scholar 

  • Zhang H-T, Zhan X-B, Zheng Z-Y, Wu J-R, English N, Yu X-B, Lin C-C (2011c) Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3448-3

  • Zheng Z-Y, Lee JW, Zhan X-B, Shi Z, Wang L, Zhu L, Wu J-R, Lin CC (2007) Effect of metabolic structures and energy requirements on curdlan production by Alcaligenes faecalis. Biotechnol Bioproc Engin 12:359–365

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grants from the National Natural Science Foundation of China (20676055, 60604028, 20806034, and 31171640), Ministry of Science and Technology of China (National Basic Research Program of China, 2007CB714303), and Research on the Preparation Technology of Edible Emulsifier and its Industrialization (National Key-Technologies R&D Program of China, 2011BAD23B00). This work was also supported by the Program for Introducing Talents of Discipline to the Universities, no. 111-2-06. The authors would like to thank these organizations for their continuing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Bei Zhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhan, XB., Lin, CC. & Zhang, HT. Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol 93, 525–531 (2012). https://doi.org/10.1007/s00253-011-3740-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3740-2

Keywords

Navigation